Nash type inequalities for fractional powers of non-negative self-adjoint operators
Autor: | A. Bendikov, Patrick Maheux |
---|---|
Přispěvatelé: | Department of Mathematics (Department of Mathematics), Cornell University [New York], Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO) |
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: |
39B62
47A60 26A12 26A33 81Q10 Pure mathematics Computer Science::Computer Science and Game Theory Inequality General Mathematics media_common.quotation_subject Type (model theory) 01 natural sciences Mathematics - Spectral Theory 010104 statistics & probability Operator (computer programming) Semigroup of operators FOS: Mathematics 0101 mathematics Spectral Theory (math.SP) logarithmic Sobolev inequality Ultracontractivity property Mathematics media_common Semigroup Applied Mathematics 010102 general mathematics Type inequality Mathematics::Spectral Theory 16. Peace & justice Fractional powers of operators Alpha (programming language) Nash inequality Dirichlet form Self-adjoint operator [MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] |
Zdroj: | Transaction of the American Mathematical Society. Transaction of the American Mathematical Society., 2007, 359 (7), pp.3085-3097. ⟨10.1090/S0002-9947-07-04020-2⟩ |
DOI: | 10.1090/S0002-9947-07-04020-2⟩ |
Popis: | Assuming that a Nash type inequality is satisfied by a non-negative self-adjoint operator $A$, we prove a Nash type inequality for the fractional powers $A^{\alpha}$ of $A$. Under some assumptions, we give ultracontractivity bounds for the semigroup $(T_{t,{\alpha}})$ generated by $-A^{\alpha}$. Comment: January,31 (2002). Submitted |
Databáze: | OpenAIRE |
Externí odkaz: |