Nash type inequalities for fractional powers of non-negative self-adjoint operators

Autor: A. Bendikov, Patrick Maheux
Přispěvatelé: Department of Mathematics (Department of Mathematics), Cornell University [New York], Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: Transaction of the American Mathematical Society.
Transaction of the American Mathematical Society., 2007, 359 (7), pp.3085-3097. ⟨10.1090/S0002-9947-07-04020-2⟩
DOI: 10.1090/S0002-9947-07-04020-2⟩
Popis: Assuming that a Nash type inequality is satisfied by a non-negative self-adjoint operator $A$, we prove a Nash type inequality for the fractional powers $A^{\alpha}$ of $A$. Under some assumptions, we give ultracontractivity bounds for the semigroup $(T_{t,{\alpha}})$ generated by $-A^{\alpha}$.
Comment: January,31 (2002). Submitted
Databáze: OpenAIRE