Mirabolic Satake equivalence and supergroups

Autor: Michael Finkelberg, Victor Ginzburg, Alexander Braverman, Roman Travkin
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1909.11492
Popis: We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup with the category of $GL(N-1,{\mathbb C}[\![t]\!])$-equivariant perverse sheaves on the affine Grassmannian of $GL_N$. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
Comment: v2: 48 pages, a few minor corrections. v3: the final version published in Compositio Mathematica
Databáze: OpenAIRE