Cyclic GMP modulates store-operated calcium entry inducing phosphatidylserine translocation at the surface of megakaryocytic cells

Autor: Freyssinet Jm, T. Dervaux, C. Porro, Maria Carmen Martinez, Corinne Kunzelmann
Rok vydání: 2005
Předmět:
Zdroj: Biochimie. 88(9)
ISSN: 0300-9084
Popis: When subjected to stimulation, cells from the vascular compartment show a spontaneous collapse of the plasma membrane phospholipid asymmetry and phosphatidylserine is exposed at the external leaflet. Thus, phosphatidylserine externalization is essential for normal hemostasis and phagocytosis. The mechanism governing the migration of phosphatidylserine to the exoplasmic leaflet is not yet fully understood. We have proposed that store-operated calcium entry (SOCE) constitutes a key step of this process. Here, interaction of [Ca 2+ ] i , cAMP and cGMP pathways and phosphatidylserine exposure was examined in human megakaryocytic cells. The membrane permeable cAMP and cGMP analogues, pCPT-cAMP and pCPT-cGMP, enhanced the Ca 2+ signal induced by ionophore and SOCE. Responses to pCPT-cAMP and pCPT-cGMP were independent of protein kinase A, protein kinase G (PKG) or ERK pathways. Inhibition of small G-proteins reduced or abolished the increase of [Ca 2+ ] i induced by pCPT-cAMP or pCPT-cGMP, respectively. pCPT-cGMP but not pCPT-cAMP enhanced the ability of cells to expose phosphatidylserine. This effect was not prevented by the inhibition of PKG or small G-proteins. These results show the differential role of cyclic nucleotides in the Ca 2+ -dependent membrane remodeling. Hence, pCPT-cGMP is another regulatory element for the completion of SOCE-induced phosphatidylserine transmembrane redistribution in HEL cells through a mechanism implicating small G-proteins.
Databáze: OpenAIRE