Gongronema latifolium Benth. leaf extract attenuates diabetes‐induced neuropathy via inhibition of cognitive, oxidative stress and inflammatory response

Autor: Amos Sunday Onikanni, Oluwafemi Adeleke Ojo, Precious Eseose Agboinghale, Lisa Ilobekemen Ekakitie, Mary Abiola Okesola, Babatunji Emmanuel Oyinloye, Basiru Olaitan Ajiboye
Rok vydání: 2020
Předmět:
Zdroj: Journal of the Science of Food and Agriculture. 100:4504-4511
ISSN: 1097-0010
0022-5142
DOI: 10.1002/jsfa.10491
Popis: BACKGROUND Gongronema latifolium (G. latifolium) Benth. leaves are traditionally used to treat diabetes mellitus (DM) and other diseases in Nigeria and West Africa. This study was performed to evaluate the neuroprotective effect of aqueous extract of G. latifolium leaf against DM. Antidiabetic activity of G. latifolium extracts (6.36, 12.72 and 25.44 mg kg-1 , i.p.) was determined in alloxan-induced diabetic rats. Fasting blood glucose level and oxidative stress markers catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), and nitric oxide (NO) levels were measured. Cognitive biomarkers acetylcholinesterase (AChE), butyrylcholinesterase (BChE), dopamine (DOPA), serotonin, epinephrine and norepinephrine and cyclooxygenase (COX-2) were measured in the brain of controls and of G. latifolium-treated diabetic rats. RESULTS Administration of G. latifolium leaf extract to diabetic rats significantly restored the alterations in the levels of fasting blood glucose (FBG). The MDA and NO levels were significantly reduced with an improvement in CAT, SOD, and GPx activity in the kidneys and brains of diabetic rats treated with G. latifolium. Gongronema latifolium also significantly decreased the levels of AChE, BChE, DOPA, serotonin, epinephrine, and nor-epinephrine in diabetic rats. G. latifolium effectively ameliorated COX-2 in diabetic rats. CONCLUSION This study showed that leaf extract of G. latifolium improved antioxidant defense against oxidative stress. It displays a neuroprotective effect resulting in the modulation of brain neurotransmitters, which could be considered as a promising treatment therapy. © 2020 Society of Chemical Industry.
Databáze: OpenAIRE