Estudo da estrutura eletrônica e das propriedades ópticas de copolímeros formados por vinilenos e anéis de tiofeno

Autor: Marçal, Nei
Přispěvatelé: Laks, Bernardo, 1947, Santos, Ricardo Paupitz Barbosa dos, Barone, Paulo Monteiro Vieira Braga, Rodrigues, Varlei, Soares, David Mendes, Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin, Programa de Pós-Graduação em Física, UNIVERSIDADE ESTADUAL DE CAMPINAS
Rok vydání: 2021
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
DOI: 10.47749/t/unicamp.2008.435356
Popis: Orientador: Bernardo Laks Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin Resumo: Antes da década de 70, todos os materiais poliméricos eram considerados como isolantes e suas aplicações tecnológicas levavam em conta esta característica. De lá para cá, uma nova classe desses materiais, os polímeros conjugados, determinaram uma nova forma de aplicação de sistemas poliméricos baseados em suas propriedades elétricas e de ótica não-linear. Um maior estímulo surgiu a partir do experimento de Mac Diarmid, Heeger e Shirakawa [1] que, expondo o Poliacetileno a agentes oxidantes, demonstraram ser possível obter um sistema no estado metálico. Atualmente encontramos filmes de Poliacetileno com condutividade elétrica da ordem do cobre (105 S/cm). O Poliacetileno, quando no regime metálico, i.e., sob alta dopagem, apresenta algumas características de metal comum: alta condutividade elétrica (cresce 13 ordens de grandeza), susceptibilidade de Pauli finita e absorção no infravermelho. Já outras propriedades como a presença de modos vibracionais localizados no infravermelho e o não comportamento da condutividade com o inverso da temperatura evidenciam ser este um material não usual. Estes polímeros conjugados que apresentam uma extensiva delocalização de elétrons são considerados semicondutores orgânicos com gap de energia relativamente pequeno, da ordem de 1,5 a 2,0 eV. O comportamento semicondutor e as propriedades decorrentes entre os elétrons e a luz têm originado a construção de vários dispositivos semicondutores e optoeletrônicos [2, 7, 3]. Problemas técnicos como estabilidade ao ambiente, processabilidade e solubilidade destes materiais provocaram a produção de uma nova classe de materiais poliméricos que foi obtida por polimerização eletroquímica [57, 58, 59] cuja estrutura molecular trata-se de sistemas que introduzem grupos vinilas (V) entre anéis de tiofeno (T). Experimentos de voltametria cíclica, espectroscopia de absorção ótica e ressonância eletrônica de spin indicam que esses sistemas possuem potencial de ionização e gap de energia menores que o apresentado pelo Politiofeno. Estudos com oligômeros de tiofeno (T) com vinilenos (V) sugerem a possibilidade de escolha desse material como alternativa ao politiofeno. O objetivo deste trabalho foi investigar teoricamente a influência do grupo vinila (V) sobre as propriedades eletrônicas nestes polímeros, reproduzir os resultados experimentais e determinar qual proporção de vinilenos (V) e tiofenos (T) que provoque o menor gap de energia de forma que quando sobre dopagem possibilite uma transição isolante metal. Desta maneira, primeiramente, determinamos as geometrias dos sistemas de interesse utilizando métodos semi-empíricos. Posteriormente investigamos a estrutura eletrônica dos polímeros de tiofeno (T) com vinilenos (V), sendo que estes polímeros foram estudados para o caso neutro e na presença de defeitos conformacionais do tipo pólaron e bipólaron. Finalizamos o estudo investigando as absorções ópticas UV-vis dos sistemas de interesse através de cálculos semi-empíricos utilizando o código ZINDO/S Abstract: Before the 1970s, all polymeric materials were considered insulators; therefore their technological applications would take this trait into account. Since then, a new development on these materials, the conjugated polymers, determined new applications for polymeric systems based in their electrical and nonlinear optical properties. Greater interest arose from the experiment by Mac Diarmid, Heeger and Shirakawa [1] who, by using polyacetylene and oxidizing agents, showed that it is possible to obtain a system in the metallic state. Nowadays it is possible to find polyacetylene films with electrical conductivity of the order of copper (10-5 S/cm). Polyacetylene, when in its metallic behavior, i.e., under high dopage, presents some characteristics of real metal: high electrical conductivity (increased by 13 orders of magnitude), finite Pauli susceptibility and infrared absorption. On the other hand, other properties such as the presence of vibrational modes localized on infrared and the odd behavior of conductivity versus the inverse of temperature make clear that this is a unusual material. These conjugated polymers, presenting an extensive delocalization of electrons, are considered organic semiconductors with relatively low energy gap, of the order of 1.5 to 2.0 eV. The semiconductive behavior and the resulting properties of the interaction between electrons and light have been the drive for the manufacturing of several semiconductor and optoelectronic devices [2, 7, 3]. Technical problems, such as environmental stability, processability and solubility of these materials, gave rise to the production of a new kind of polymeric materials that were obtained by electrochemical polymerization [57, 58, 59], in which the molecular structure is a system that introduces vinylene groups (V) between tiophene rings (T). Experiments involving cyclic voltametry, optical absorption spectrometry and spin electronic ressonance indicate that these systems have ionization potential and energy gap smaller than those presented by Polythiophene. Studies with thiopene oligomers (T) with vinylene (V) suggest this material can be chosen as an alternative to Polytiophene. The goal of this work is to theoretically investigate the in uence of the vinyle group (V) on the electronic properties on these polymers, reproduce experimental results and determine what is the vinylene (V) to thiophene (T) rate that causes the smallest energy gap, such that doping will produce a insulator-metal transition. Therefore, we first determine the target systems' geometry using semi-empirical methods. Then we investigate the electronic structure of the tiophene (T) and vinylene (V) polymers both for neutral systems and in the presence of conformational defects of polaron and bipolaron types. We nalized the study by investigating the UV-vis optical absorption of the target systems through semi-empirical calculations using ZINDO/S code Doutorado Estrutura Eletrônica de Átomos e Moléculas ; Teoria Doutor em Ciências
Databáze: OpenAIRE