Caracterización funcional del canal de potasio activado por calcio de conductancia intermedia (KCa3.1) en el endotelio de la córnea en condiciones fisiológicas y en ambientes hiperglúcidos

Autor: Amador-Munoz, Diana Patricia
Přispěvatelé: Matheus, Luisa, Grupo de Neurociencias de la Universidad del Rosario (NEUROS)
Jazyk: Spanish; Castilian
Rok vydání: 2021
Předmět:
Zdroj: Vieira-Potter, Victoria J.; Karamichos, Dimitrios; Lee, Darren J. (2016) Ocular Complications of Diabetes and Therapeutic Approaches. En: BioMed Research International. Vol. 2016; 2314-6133; Consultado en: 2018/03/07/16:33:54. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826913/. Disponible en: 10.1155/2016/3801570.
Yau, Joanne W. Y.; Rogers, Sophie L.; Kawasaki, Ryo; Lamoureux, Ecosse L.; Kowalski, Jonathan W.; Bek, Toke; Chen, Shih-Jen; Dekker, Jacqueline M.; Fletcher, Astrid; Grauslund, Jakob; Haffner, Steven; Hamman, Richard F.; Ikram, M. Kamran; Kayama, Takamasa; Klein, Barbara E. K.; Klein, Ronald; Krishnaiah, Sannapaneni; Mayurasakorn, Korapat; O'Hare, Joseph P.; Orchard, Trevor J.; Porta, Massimo; Rema, Mohan; Roy, Monique S.; Sharma, Tarun; Shaw, Jonathan; Taylor, Hugh; Tielsch, James M.; Varma, Rohit; Wang, Jie Jin; Wang, Ningli; West, Sheila; Xu, Liang; Yasuda, Miho; Zhang, Xinzhi; Mitchell, Paul; Wong, Tien Y.; Meta-Analysis for Eye Disease (META-EYE) Study Group (2012) Global prevalence and major risk factors of diabetic retinopathy. En: Diabetes Care. Vol. 35; No. 3; pp. 556-564; 1935-5548; Disponible en: 10.2337/dc11-1909.
WHO | Diabetes country profiles 2016. En: WHO. Consultado en: 2018/03/07/15:45:37. Disponible en: http://www.who.int/diabetes/country-profiles/en/.
Powers, Alvin C.; Kasper, Dennis; Fauci, Anthony; Hauser, Stephen; Longo, Dan; Jameson, J. Larry; Loscalzo, Joseph (2015) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2018/03/07/15:41:21. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1120816080.
International Diabetes Federation (2019) IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation; Consultado en: 2020/11/03/14:20:44. Disponible en: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf.
Liang, Chun-Chi; Park, Ann Y.; Guan, Jun-Lin (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. En: Nature Protocols. Vol. 2; No. 2; pp. 329-333; 1750-2799; Disponible en: 10.1038/nprot.2007.30.
Srinivas, S. P.; Yeh, J. C.; Ong, A.; Bonanno, J. A. (1998) Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. En: Current Eye Research. Vol. 17; No. 10; pp. 994-1004; 0271-3683
Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo (2009) The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells. En: Current Eye Research. Vol. 34; No. 5; pp. 347-354; 1460-2202; Disponible en: 10.1080/02713680902829624.
Srinivas, Sangly P. (2012) Cell Signaling in Regulation of the Barrier Integrity of the Corneal Endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 8-15; 0014-4835; Consultado en: 2018/03/13/17:08:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271188/. Disponible en: 10.1016/j.exer.2011.09.009.
Mergler, Stefan; Pleyer, Uwe (2007) The human corneal endothelium: new insights into electrophysiology and ion channels. En: Progress in Retinal and Eye Research. Vol. 26; No. 4; pp. 359-378; 1350-9462; Disponible en: 10.1016/j.preteyeres.2007.02.001.
El-Agamy, Amira; Alsubaie, Shams (2017) Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 11; pp. 481-486; 1177-5467; Disponible en: 10.2147/OPTH.S126217.
Sudhir, Rachapalle R.; Raman, Rajiv; Sharma, Tarun (2012) Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: a population-based study, Sankara Nethralaya Diabetic Retinopathy and Molecular Genetics Study (SN-DREAMS, Report 23). En: Cornea. Vol. 31; No. 10; pp. 1119-1122; 1536-4798; Disponible en: 10.1097/ICO.0b013e31823f8e00.
Ljubimov, Alexander V. (2017) Diabetic complications in the cornea. En: Vision Research. Diabetic Retinopathy; Vol. 139; pp. 138-152; 0042-6989; Consultado en: 2018/03/13/16:51:28. Disponible en: http://www.sciencedirect.com/science/article/pii/S0042698917300470. Disponible en: 10.1016/j.visres.2017.03.002.
Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D. (2012) Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. En: American Journal of Human Genetics. Vol. 90; No. 3; pp. 533-539; 1537-6605; Disponible en: 10.1016/j.ajhg.2012.01.013.
Loganathan, Sampath K.; Schneider, Hans-Peter; Morgan, Patricio E.; Deitmer, Joachim W.; Casey, Joseph R. (2016) Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 5; pp. C735-C748; 0363-6143; Consultado en: 2018/03/13/16:43:25. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00078.2016. Disponible en: 10.1152/ajpcell.00078.2016.
Hopfer, Ulrike; Fukai, Naomi; Hopfer, Helmut; Wolf, Gunter; Joyce, Nancy; Li, En; Olsen, Bjorn R. (2005) Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. Vol. 19; No. 10; pp. 1232-1244; 1530-6860; Disponible en: 10.1096/fj.04-3019com.
Jurkunas, Ula V.; Bitar, Maya S.; Funaki, Toshinari; Azizi, Behrooz (2010) Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. En: The American Journal of Pathology. Vol. 177; No. 5; pp. 2278-2289; 1525-2191; Disponible en: 10.2353/ajpath.2010.100279.
Jurkunas, Ula V.; Rawe, Ian; Bitar, Maya S.; Zhu, Cheng; Harris, Deshea L.; Colby, Kathryn; Joyce, Nancy C. (2008) Decreased expression of peroxiredoxins in Fuchs' endothelial dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 7; pp. 2956-2963; 1552-5783; Disponible en: 10.1167/iovs.07-1529.
Baratz, Keith H.; Tosakulwong, Nirubol; Ryu, Euijung; Brown, William L.; Branham, Kari; Chen, Wei; Tran, Khoa D.; Schmid-Kubista, Katharina E.; Heckenlively, John R.; Swaroop, Anand; Abecasis, Goncalo; Bailey, Kent R.; Edwards, Albert O. (2010) E2-2 protein and Fuchs's corneal dystrophy. En: The New England Journal of Medicine. Vol. 363; No. 11; pp. 1016-1024; 1533-4406; Disponible en: 10.1056/NEJMoa1007064.
Kim, Eun Chul; Toyono, Tetsuya; Berlinicke, Cynthia A.; Zack, Donald J.; Jurkunas, Ula; Usui, Tomohiko; Jun, Albert S. (2017) Screening and Characterization of Drugs That Protect Corneal Endothelial Cells Against Unfolded Protein Response and Oxidative Stress. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 2; pp. 892-900; 0146-0404; Consultado en: 2018/03/13/16:30:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295784/. Disponible en: 10.1167/iovs.16-20147.
Vedana, Gustavo; Villarreal, Guadalupe; Jun, Albert S (2016) Fuchs endothelial corneal dystrophy: current perspectives. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 10; pp. 321-330; 1177-5467; Consultado en: 2018/03/13/16:29:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762439/. Disponible en: 10.2147/OPTH.S83467.
Xia, Dan; Zhang, Shuai; Nielsen, Esben; Ivarsen, Anders Ramløv; Liang, Chunyong; Li, Qiang; Thomsen, Karen; Hjortdal, Jesper Østergaard; Dong, Mingdong (2016) The Ultrastructures and Mechanical Properties of the Descement’s Membrane in Fuchs Endothelial Corneal Dystrophy. En: Scientific Reports. Vol. 6; pp. 23096 2045-2322; Consultado en: 2018/03/13/16:27:02. Disponible en: https://www.nature.com/articles/srep23096. Disponible en: 10.1038/srep23096.
Shenoy, Radha; Khandekar, Rajeev; Bialasiewicz, Alexander; Al Muniri, Abdullah (2009) Corneal endothelium in patients with diabetes mellitus: a historical cohort study. En: European Journal of Ophthalmology. Vol. 19; No. 3; pp. 369-375; 1120-6721
Larsson, L. I.; Bourne, W. M.; Pach, J. M.; Brubaker, R. F. (1996) Structure and function of the corneal endothelium in diabetes mellitus type I and type II. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 114; No. 1; pp. 9-14; 0003-9950
Takahashi, Hiroshi; Akiba, Kiyoshi; Noguchi, Takayasu; Ohmura, Takeo; Takahashi, Ryoki; Ezure, Youji; Ohara, Kunitoshi; Zieske, James D. (2000) Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. En: Current Eye Research. Vol. 21; No. 2; pp. 608-615; 0271-3683; Consultado en: 2018/03/13/11:27:30. Disponible en: https://www.tandfonline.com/doi/abs/10.1076/0271-3683%28200008%292121-VFT608. Disponible en: 10.1076/0271-3683(200008)2121-VFT608.
Matsuda, Mamoru; Awata, Takashi; Ohashi, Yuichi; Inaba, Masamaru; Fukuda, Masakatsu; Manabe, Reizo (1987) The effects of aldose reductase inhibitor on the corneal endothelial morphology in diabetic rats. En: Current Eye Research. Vol. 6; No. 2; pp. 391-397; 0271-3683; Consultado en: 2018/03/13/11:25:01. Disponible en: https://doi.org/10.3109/02713688709025192. Disponible en: 10.3109/02713688709025192.
Srivastava, Satish K; Yadav, Umesh C S; Reddy, Aramati BM; Saxena, Ashish; Tammali, Ravinder; Mohammad, Shoeb; Ansari, Naseem H; Bhatnagar, Aruni; Petrash, Mark J; Srivastava, Sanjay; Ramana, Kota V (2011) Aldose Reductase Inhibition Suppresses Oxidative Stress-Induced Inflammatory Disorders. En: Chemico-biological interactions. Vol. 191; No. 1-3; pp. 330-338; 0009-2797; Consultado en: 2018/03/13/11:23:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103634/. Disponible en: 10.1016/j.cbi.2011.02.023.
Hasan, S. Akbar (2010) The Cornea in Diabetes Mellitus. En: Diabetic Retinopathy. pp. 347-355; Springer, New York, NY; 978-0-387-85899-9 978-0-387-85900-2; Consultado en: 2018/03/13/11:21:29. Disponible en: https://link.springer.com/chapter/10.1007/978-0-387-85900-2_12.
Sagoo, Pervinder; Chan, Giulia; Larkin, Daniel F. P.; George, Andrew J. T. (2004) Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 11; pp. 3964-3973; 0146-0404; Disponible en: 10.1167/iovs.04-0439.
Apoptosis in the Endothelium of Human Corneas for Transplantation | IOVS | ARVO Journals. Consultado en: 2018/03/13/10:56:53. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2123710.
Haeberlein, S. L. (2004) Mitochondrial function in apoptotic neuronal cell death. En: Neurochemical research. Vol. 29; No. 3; pp. 521-530; 0364-3190; Consultado en: 2018/03/13/10:52:41. Disponible en: http://europepmc.org/abstract/med/15038600. Disponible en: 10.1023/B:NERE.0000014823.74782.b7.
Umapathy, Ankita; Donaldson, Paul; Lim, Julie (2013) Antioxidant Delivery Pathways in the Anterior Eye. En: BioMed Research International. Consultado en: 2018/03/13/10:44:40. Disponible en: https://www.hindawi.com/journals/bmri/2013/207250/.
Diecke, Friedrich P. J.; Ma, Li; Iserovich, Pavel; Fischbarg, Jorge (2007) Corneal endothelium transports fluid in the absence of net solute transport. En: Biochimica et Biophysica Acta (BBA). Vol. 1768; No. 9; pp. 2043-2048; 0005-2736; Consultado en: 2018/03/13/09:24:30. Disponible en: http://www.sciencedirect.com/science/article/pii/S0005273607001800. Disponible en: 10.1016/j.bbamem.2007.05.020.
Cuadrado Escamilla, José Luis (2009) Estudio anatomo-clínico y epidemiológico de la queratitis laminar difusa como complicación postquirúrgica de la fotoqueratomileusis (lasik). Valencia: Universitat de València, Servei de Publicacions
Hu, Rebecca G.; Zhu, Yuan; Donaldson, Paul; Kalloniatis, Michael (2012) Alterations of Glutamate, Glutamine, and Related Amino Acids in the Anterior Eye Secondary to Ischaemia and Reperfusion. En: Current Eye Research. Vol. 37; No. 7; pp. 633-643; 0271-3683; Consultado en: 2018/03/13/09:09:11. Disponible en: https://doi.org/10.3109/02713683.2012.669509. Disponible en: 10.3109/02713683.2012.669509.
Mergler, Stefan; Pleyer, Uwe; Reinach, Peter; Bednarz, Jürgen; Dannowski, Haike; Engelmann, Katrin; Hartmann, Christian; Yousif, Tarik (2005) EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 2; pp. 285-293; 0014-4835; Disponible en: 10.1016/j.exer.2004.09.012.
Zhang, Wenlin; Li, Hongde; Ogando, Diego G.; Li, Shimin; Feng, Matthew; Price, Francis W.; Tennessen, Jason M.; Bonanno, Joseph A. (2017) Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. En: EBioMedicine. Vol. 16; pp. 292-301; 2352-3964; Disponible en: 10.1016/j.ebiom.2017.01.004.
Harvitt, D. M.; Bonanno, J. A. (1998) Oxygen consumption of the rabbit cornea. En: Investigative Ophthalmology & Visual Science. Vol. 39; No. 2; pp. 444-448; 1552-5783; Consultado en: 2018/03/13/08:47:43. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2181302.
Wojcik, Katarzyna A.; Kaminska, Anna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P. (2013) Oxidative Stress in the Pathogenesis of Keratoconus and Fuchs Endothelial Corneal Dystrophy. En: International Journal of Molecular Sciences. Vol. 14; No. 9; pp. 19294-19308; 1422-0067; Consultado en: 2018/03/13/04:51:53. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794834/. Disponible en: 10.3390/ijms140919294.
Bourne, W. M. (2003) Biology of the corneal endothelium in health and disease. En: Eye (London, England). Vol. 17; No. 8; pp. 912-918; 0950-222X; Disponible en: 10.1038/sj.eye.6700559.
Lázaro, C. García; Castillo, A. Gómez; García, J. Feijóo; Macías, JM Benítez; García, J. Sánchez (2000) [Study of the corneal endothelium after glaucoma surgery]. En: Archivos de la Sociedad Espanola de Oftalmologia. Vol. 75; No. 2; pp. 75-80; 0365-6691; Consultado en: 2018/03/13/02:12:49. Disponible en: http://europepmc.org/abstract/med/11151123.
Murano, Nao; Ishizaki, Masamichi; Sato, Shigeru; Fukuda, Yuh; Takahashi, Hiroshi (2008) Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 126; No. 6; pp. 816-821; 1538-3601; Disponible en: 10.1001/archopht.126.6.816.
Bonanno, Joseph A. (2003) Identity and regulation of ion transport mechanisms in the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 1; pp. 69-94; 1350-9462
Remington, Lee Ann (2011) Clinical Anatomy of the Visual System E-Book. pp. 303 : Elsevier Health Sciences; 978-1-4557-2777-3
Wörner, Carlos H.; Olguín, Alicia; Ruíz-García, José L.; Garzón-Jiménez, Nuria (2011) Cell Pattern in Adult Human Corneal Endothelium. En: PLOS ONE. Vol. 6; No. 5; pp. e19483 1932-6203; Consultado en: 2018/03/11/16:58:12. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019483. Disponible en: 10.1371/journal.pone.0019483.
Liesegang, Thomas J. (2002) Physiologic changes of the cornea with contact lens wear. En: The CLAO journal: official publication of the Contact Lens Association of Ophthalmologists, Inc. Vol. 28; No. 1; pp. 12-27; 0733-8902
Standring, Susan (2016) Gray's anatomy : the anatomical basis of clinical practice. United States: New York : Elsevier Limited; 9780702052309 (main edition) 9780702063060 (international edition paperback) 9780702068515 (PDF, EPUB) 9780702068522 (Inkling interactive ebook)
Chen, Edwin S.; Terry, Mark A.; Shamie, Neda; Hoar, Karen L.; Friend, Daniel J. (2008) Descemet-stripping automated endothelial keratoplasty: six-month results in a prospective study of 100 eyes. En: Cornea. Vol. 27; No. 5; pp. 514-520; 1536-4798; Disponible en: 10.1097/ICO.0b013e3181611c50.
Murphy, C.; Alvarado, J.; Juster, R.; Maglio, M. (1984) Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. En: Investigative Ophthalmology & Visual Science. Vol. 25; No. 3; pp. 312-322; 0146-0404
Li, Q. J.; Ashraf, M. F.; Shen, D. F.; Green, W. R.; Stark, W. J.; Chan, C. C.; O'Brien, T. P. (2001) The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 119; No. 11; pp. 1597-1604; 0003-9950
Módis, László; Szalai, Eszter; Kertész, Katalin; Kemény-Beke, Adám; Kettesy, Beáta; Berta, András (2010) Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. En: Histology and Histopathology. Vol. 25; No. 12; pp. 1531-1537; 1699-5848; Disponible en: 10.14670/HH-25.1531.
Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh (2015) Progress in corneal wound healing. En: Progress in Retinal and Eye Research. Vol. 49; pp. 17-45; 1873-1635; Disponible en: 10.1016/j.preteyeres.2015.07.002.
Skarbez, Kathryn; Priestley, Yos; Hoepf, Marcia; Koevary, Steven B. (2010) Comprehensive Review of the Effects of Diabetes on Ocular Health. En: Expert review of ophthalmology. Vol. 5; No. 4; pp. 557-577; 1746-9899; Consultado en: 2018/03/07/16:34:08. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134329/. Disponible en: 10.1586/eop.10.44.
Kampik, D.; Ali, R. R.; Larkin, D. F. P. (2012) Experimental gene transfer to the corneal endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 54-59; 1096-0007; Disponible en: 10.1016/j.exer.2011.07.001.
Lwigale, Peter Y.; Bronner-Fraser, Marianne (2009) Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. En: Developmental biology. Vol. 336; No. 2; pp. 257-265; 0012-1606; Consultado en: 2018/04/12/12:59:21. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800376/. Disponible en: 10.1016/j.ydbio.2009.10.008.
Zieske, James D. (2004) Corneal development associated with eyelid opening. En: International Journal of Developmental Biology. Vol. 48; No. 8-9; pp. 903-911; 0214-6282, 1696-3547; Consultado en: 2018/04/12/12:46:08. Disponible en: http://www.ijdb.ehu.es/web/paper/041860jz. Disponible en: 10.1387/ijdb.041860jz.
Voltage-dependent calcium channel, L-type, alpha-1 subunit (IPR005446) < InterPro < EMBL-EBI. Consultado en: 2018/05/29/13:18:43. Disponible en: http://www.ebi.ac.uk/interpro/entry/IPR005446.
Kurtenbach, Sarah; Kurtenbach, Stefan; Zoidl, Georg (2014) Emerging functions of pannexin 1 in the eye. En: Frontiers in Cellular Neuroscience. Vol. 8; 1662-5102; Consultado en: 2018/05/29/05:00:47. Disponible en: https://www.frontiersin.org/articles/10.3389/fncel.2014.00263/full. Disponible en: 10.3389/fncel.2014.00263.
Anumanthan, Govindaraj; Gupta, Suneel; Fink, Michael K.; Hesemann, Nathan P.; Bowles, Douglas K.; McDaniel, Lindsey M.; Muhammad, Maaz; Mohan, Rajiv R. (2018) KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis. En: PloS One. Vol. 13; No. 3; pp. e0192145 1932-6203; Disponible en: 10.1371/journal.pone.0192145.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 1552-5783; Consultado en: 2018/05/29/02:25:41. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2188361. Disponible en: 10.1167/iovs.12-9475.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 0146-0404; Consultado en: 2018/05/29/02:25:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/. Disponible en: 10.1167/iovs.12-9475.
Watsky, M. A.; Cooper, K.; Rae, J. L. (1992) Transient outwardly rectifying potassium channel in the rabbit corneal endothelium. En: The Journal of Membrane Biology. Vol. 128; No. 2; pp. 123-132; 0022-2631
Yang, Dongli; MacCallum, Donald K.; Ernst, Stephen A.; Hughes, Bret A. (2003) Expression of the Inwardly Rectifying K+ Channel Kir2.1 in Native Bovine Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 8; pp. 3511-3519; 1552-5783; Consultado en: 2018/05/28/15:10:58. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2200243. Disponible en: 10.1167/iovs.02-1306.
Kew, James N. C.; Davies, Ceri H. (2010) Ion Channels: From Structure to Function. pp. 586 : Oxford University Press; 978-0-19-929675-0
Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux | American Journal of Physiology-Cell Physiology. Consultado en: 2018/05/28/03:18:04. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00095.2016?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed.
Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. Consultado en: 2018/05/28/02:21:01. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/.
Huang, Hai; Pugsley, Michael K.; Fermini, Bernard; Curtis, Michael J.; Koerner, John; Accardi, Michael; Authier, Simon (2017) Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative. En: Journal of Pharmacological and Toxicological Methods. Focused Issue on Safety Pharmacology; Vol. 87; pp. 11-23; 1056-8719; Consultado en: 2018/05/27/16:08:52. Disponible en: http://www.sciencedirect.com/science/article/pii/S1056871917300825. Disponible en: 10.1016/j.vascn.2017.04.002.
Wulff, Heike; Castle, Neil A.; Pardo, Luis A. (2009) Voltage-gated potassium channels as therapeutic targets. En: Nature Reviews. Drug Discovery. Vol. 8; No. 12; pp. 982-1001; 1474-1784; Disponible en: 10.1038/nrd2983.
Rae, J. L.; Shepard, A. R. (2000) Kv3.3 potassium channels in lens epithelium and corneal endothelium. En: Experimental Eye Research. Vol. 70; No. 3; pp. 339-348; 0014-4835; Disponible en: 10.1006/exer.1999.0796.
Rudy, B.; Maffie, J.; Amarillo, Y.; Clark, B.; Goldberg, E. M.; Jeong, H.-Y.; Kruglikov, I.; Kwon, E.; Nadal, M.; Zagha, E.; Squire, Larry R. (2009) Voltage Gated Potassium Channels: Structure and Function of Kv1 to Kv9 Subfamilies. En: Encyclopedia of Neuroscience. pp. 397-425; Oxford: Academic Press; 978-0-08-045046-9; Consultado en: 2018/05/27/04:00:30. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780080450469016302.
Voltage-gated potassium channels | Introduction | BPS/IUPHAR Guide to PHARMACOLOGY. Consultado en: 2018/05/25/13:47:52. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=81.
Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S. (2014) Mechanisms of Activation of Voltage-Gated Potassium Channels. En: Acta Naturae. Vol. 6; No. 4; pp. 10-26; 2075-8251; Consultado en: 2018/05/24/19:53:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273088/.
Joyce, Nancy C.; Harris, Deshea L. (2010) Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors. En: Molecular Vision. Vol. 16; pp. 897-906; 1090-0535
Rae, J. L.; Watsky, M. A. (1996) Ionic channels in corneal endothelium. En: The American Journal of Physiology. Vol. 270; No. 4 Pt 1; pp. C975-989; 0002-9513; Disponible en: 10.1152/ajpcell.1996.270.4.C975.
Yu, Frank H; Catterall, William A (2003) Overview of the voltage-gated sodium channel family. En: Genome Biology. Vol. 4; No. 3; pp. 207 1465-6906; Consultado en: 2018/05/21/13:23:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153452/.
Chhabra, Mahendra; Prausnitz, John M.; Radke, Clayton J. (2009) Modeling corneal metabolism and oxygen transport during contact lens wear. En: Optometry and Vision Science: Official Publication of the American Academy of Optometry. Vol. 86; No. 5; pp. 454-466; 1538-9235; Disponible en: 10.1097/OPX.0b013e31819f9e70.
Li, Shimin; Allen, Kah Tan; Bonanno, Joseph A. (2011) Soluble adenylyl cyclase mediates bicarbonate-dependent corneal endothelial cell protection. En: American Journal of Physiology. Cell Physiology. Vol. 300; No. 2; pp. C368-374; 1522-1563; Disponible en: 10.1152/ajpcell.00314.2010.
Sun, Xing Cai; Zhai, Chang-Bin; Cui, Miao; Chen, Yanqiu; Levin, Lonny R.; Buck, Jochen; Bonanno, Joseph A. (2003) HCO(3)(-)-dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. En: American Journal of Physiology. Cell Physiology. Vol. 284; No. 5; pp. C1114-1122; 0363-6143; Disponible en: 10.1152/ajpcell.00400.2002.
Rauz, Saaeha; Walker, Elizabeth A.; Murray, Philip I.; Stewart, Paul M. (2003) Expression and distribution of the serum and glucocorticoid regulated kinase and the epithelial sodium channel subunits in the human cornea. En: Experimental Eye Research. Vol. 77; No. 1; pp. 101-108; 0014-4835
Sánchez, J. M.; Li, Y.; Rubashkin, A.; Iserovich, P.; Wen, Q.; Ruberti, J. W.; Smith, R. W.; Rittenband, D.; Kuang, K.; Diecke, F. P. J.; Fischbarg, J. (2002) Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. En: The Journal of Membrane Biology. Vol. 187; No. 1; pp. 37-50; 0022-2631; Disponible en: 10.1007/s00232-001-0151-9.
Fischbarg, Jorge (2010) Fluid Transport Across Leaky Epithelia: Central Role of the Tight Junction and Supporting Role of Aquaporins. En: Physiological Reviews. Vol. 90; No. 4; pp. 1271-1290; 0031-9333; Consultado en: 2018/05/17/20:38:47. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00025.2009. Disponible en: 10.1152/physrev.00025.2009.
Riley, M. V.; Winkler, B. S.; Starnes, C. A.; Peters, M. I. (1997) Fluid and ion transport in corneal endothelium: insensitivity to modulators of Na(+)-K(+)-2Cl-cotransport. En: The American Journal of Physiology. Vol. 273; No. 5 Pt 1; pp. C1480-1486; 0002-9513
Diecke, Friedrich P.; Wen, Quan; Iserovich, Pavel; Li, Jianfeng; Kuang, Kunyan; Fischbarg, Jorge (2005) Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 6; pp. 777-785; 0014-4835; Disponible en: 10.1016/j.exer.2004.12.008.
Watsky, M. A.; Rae, J. L. (1991) Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques. En: Investigative Ophthalmology & Visual Science. Vol. 32; No. 1; pp. 106-111; 0146-0404
Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G. (2015) Human SLC4A11 Is a Novel NH3/H+ Co-transporter. En: The Journal of Biological Chemistry. Vol. 290; No. 27; pp. 16894-16905; 1083-351X; Disponible en: 10.1074/jbc.M114.627455.
Bonanno, Joseph A. (2012) Molecular Mechanisms Underlying the Corneal Endothelial Pump. En: Experimental Eye Research. Vol. 95; No. 1; pp. 2-7; 0014-4835; Consultado en: 2018/05/09/04:12:43. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199349/. Disponible en: 10.1016/j.exer.2011.06.004.
Redbrake, C.; Salla, S.; Frantz, A.; Reim, M. (1999) Metabolic changes of the human donor cornea during organ-culture. En: Acta Ophthalmologica Scandinavica. Vol. 77; No. 3; pp. 266-272; 1395-3907
Reim, M.; Lax, F.; Lichte, H.; Turss, R. (1967) Steady State Levels of Glucose in the Different Layers of the Cornea, Aqueous Humor, Blood and Tears in vivo. En: Ophthalmologica. Vol. 154; No. 1; pp. 39-50; 0030-3755, 1423-0267; Consultado en: 2018/05/08/20:19:19. Disponible en: https://www.karger.com/Article/FullText/305147. Disponible en: 10.1159/000305147.
Kumagai, A. K.; Glasgow, B. J.; Pardridge, W. M. (1994) GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. En: Investigative Ophthalmology & Visual Science. Vol. 35; No. 6; pp. 2887-2894; 0146-0404
Verkman, AS (2002) Aquaporin water channels and endothelial cell function. En: Journal of Anatomy. Vol. 200; No. 6; pp. 617-627; 0021-8782; Consultado en: 2018/05/08/19:17:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570747/. Disponible en: 10.1046/j.1469-7580.2002.00058.x.
Kuang, Kunyan; Yiming, Maimaiti; Wen, Quan; Li, Yansui; Ma, Li; Iserovich, Pavel; Verkman, A. S.; Fischbarg, Jorge (2004) Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. En: Experimental Eye Research. Vol. 78; No. 4; pp. 791-798; 0014-4835; Disponible en: 10.1016/j.exer.2003.11.017.
Mendez, M. G.; Restle, D.; Janmey, P. A. (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. En: Biophysical Journal. Vol. 107; No. 2; pp. 314-323; 1542-0086; Disponible en: 10.1016/j.bpj.2014.04.050.
He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles (2016) 3D map of the human corneal endothelial cell. En: Scientific Reports. Vol. 6; pp. 29047 2045-2322; Consultado en: 2018/05/07/18:57:20. Disponible en: https://www.nature.com/articles/srep29047. Disponible en: 10.1038/srep29047.
Hejtmancik, J. Fielding; Nickerson, John M. (2015) Molecular Biology of Eye Disease. pp. 573 : Academic Press; 978-0-12-801267-3
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 1. En: The Eye (Fourth Edition). pp. 1-102.e2; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/03/02:38:01. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000010.
Chang, Hui; Ma, Yu-Guang; Wang, Yun-Ying; Song, Zhen; Li, Quan; Yang, Ning; Zhao, Hua-Zhou; Feng, Han-Zhong; Chang, Yao-Ming; Ma, Jin; Yu, Zhi-Bin; Xie, Man-Jiang (2011) High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BKCa channel. En: Journal of Cellular Physiology. Vol. 226; No. 6; pp. 1660-1675; 1097-4652; Consultado en: 2018/05/03/02:07:35. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.22497. Disponible en: 10.1002/jcp.22497.
Stepp, Mary Ann (2006) Corneal integrins and their functions. En: Experimental Eye Research. Vol. 83; No. 1; pp. 3-15; 0014-4835; Disponible en: 10.1016/j.exer.2006.01.010.
Fernández, A.; Moreno, J.; Prósper, F.; García, M.; Echeveste, J. (2008) Regeneración de la superficie ocular: stem cells/células madre y técnicas reconstructivas. En: Anales del Sistema Sanitario de Navarra. Vol. 31; No. 1; pp. 53-69; 1137-6627; Consultado en: 2018/05/02/14:27:44. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1137-66272008000100005&lng=es&nrm=iso&tlng=es.
Goel, Manik; Picciani, Renata G; Lee, Richard K; Bhattacharya, Sanjoy K (2010) Aqueous Humor Dynamics: A Review. En: The Open Ophthalmology Journal. Vol. 4; pp. 52-59; 1874-3641; Consultado en: 2018/05/02/03:36:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032230/. Disponible en: 10.2174/1874364101004010052.
Dawson, D G.; John L. U; Henry F. Edelhauser (2011) Cornea and Sclera. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0; Consultado en: 2018/05/02/02:21:35. Disponible en: https://www.elsevier.com/books/adlers-physiology-of-the-eye/levin/978-0-323-05714-1.
Güell, J. L. (2015) Cornea. pp. 138 : Karger Medical and Scientific Publishers; 978-3-318-05453-8
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 4. En: The Eye (Fourth Edition). pp. 157-268.e4; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/01/23:26:43. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000046.
Untitled Document. Consultado en: 2018/05/01/22:20:36. Disponible en: http://med.javeriana.edu.co/oftalmologia/materiales/refraccion.htm.
Mannis, Mark J.; Holland, Edward J. (2016) Cornea E-Book. pp. 2189 : Elsevier Health Sciences; 978-0-323-35758-6
Williams, K. Keven; Noe, Robin L.; Grossniklaus, Hans E.; Drews-Botsch, Carolyn; Edelhauser, Henry F. (1992) Correlation of Histologic Corneal Endothelial Cell Counts With Specular Microscopic Cell Density. En: Archives of Ophthalmology. Vol. 110; No. 8; pp. 1146-1149; 0003-9950; Consultado en: 2018/05/01/20:44:16. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/639808. Disponible en: 10.1001/archopht.1992.01080200126039.
Zhang, Xue; Zeng, Xuhui; Xia, Xiao-Ming; Lingle, Christopher J. (2006) pH-regulated Slo3 K+ Channels: Properties of Unitary Currents. En: The Journal of General Physiology. Vol. 128; No. 3; pp. 301-315; 0022-1295; Consultado en: 2018/04/30/23:27:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151565/. Disponible en: 10.1085/jgp.200609551.
Du, Jintang; Aleff, Ross A.; Soragni, Elisabetta; Kalari, Krishna; Nie, Jinfu; Tang, Xiaojia; Davila, Jaime; Kocher, Jean-Pierre; Patel, Sanjay V.; Gottesfeld, Joel M.; Baratz, Keith H.; Wieben, Eric D. (2015) RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. En: The Journal of Biological Chemistry. Vol. 290; No. 10; pp. 5979-5990; 1083-351X; Disponible en: 10.1074/jbc.M114.621607.
Chung, Doug D.; Frausto, Ricardo F.; Lin, Benjamin R.; Hanser, Evelyn M.; Cohen, Zack; Aldave, Anthony J. (2017) Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 7; pp. 3202-3214; 1552-5783; Disponible en: 10.1167/iovs.17-21423.
Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N.; Xue, Zhigang; Deng, Sophie X.; Fan, Guoping (2013) Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. En: Human Molecular Genetics. Vol. 22; No. 7; pp. 1271-1279; 1460-2083; Disponible en: 10.1093/hmg/dds527.
Griffith, May; Osborne, Rosemarie; Munger, Rejean; Xiong, Xiaojuan; Doillon, Charles J.; Laycock, Noelani L. C.; Hakim, Malik; Song, Ying; Watsky, Mitchell A. (1999) Functional Human Corneal Equivalents Constructed from Cell Lines. En: Science. Vol. 286; No. 5447; pp. 2169-2172; 0036-8075, 1095-9203; Consultado en: 2018/04/30/22:59:12. Disponible en: http://science.sciencemag.org/content/286/5447/2169. Disponible en: 10.1126/science.286.5447.2169.
Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi; Donev, Rossen (2016) Chapter Six. En: Advances in Protein Chemistry and Structural Biology. Ion channels as therapeutic targets, part B; Vol. 104; pp. 233-261; Academic Press; Consultado en: 2018/04/30/22:55:31. Disponible en: http://www.sciencedirect.com/science/article/pii/S1876162315000954.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/04/30/02:28:23. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Eghrari, Allen O.; Riazuddin, S. Amer; Gottsch, John D. (2015) Overview of the Cornea: Structure, Function, and Development. En: Progress in Molecular Biology and Translational Science. Vol. 134; pp. 7-23; 1877-1173; Consultado en: 2018/04/16/22:32:47. Disponible en: https://jhu.pure.elsevier.com/en/publications/overview-of-the-cornea-structure-function-and-development-8. Disponible en: 10.1016/bs.pmbts.2015.04.001.
Kaji, Yuichi; Amano, Shiro; Usui, Tomohiko; Oshika, Tetsuro; Yamashiro, Kenji; Ishida, Susumu; Suzuki, Kaori; Tanaka, Sumiyoshi; Adamis, Anthony P.; Nagai, Ryoji; Horiuchi, Seiko (2003) Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 2; pp. 521-528; 0146-0404
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Jeong, Il-Ha; Kim, Hyojun; Kim, Jin Sook (2011) Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 249; No. 4; pp. 529-536; 0721-832X, 1435-702X; Consultado en: 2018/11/02/15:41:51. Disponible en: http://link.springer.com/10.1007/s00417-010-1573-9. Disponible en: 10.1007/s00417-010-1573-9.
Aldrich, Benjamin T.; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M.; Burckart, Kimberlee A.; Schmidt, Gregory A.; Reed, Cynthia R.; Zimmerman, M. Bridget; Kruse, Friedrich E.; Greiner, Mark A. (2017) Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus. En: Investigative Opthalmology & Visual Science. Vol. 58; No. 4; pp. 2130 1552-5783; Consultado en: 2018/11/02/15:06:59. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-21094. Disponible en: 10.1167/iovs.16-21094.
Chloride channels | Ion channels | IUPHAR/BPS Guide to PHARMACOLOGY. Consultado en: 2018/10/27/04:00:14. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=120.
(2009) Chloride channels. En: British Journal of Pharmacology. Vol. 158; No. Suppl 1; pp. S130-S134; 0007-1188; Consultado en: 2018/10/27/02:52:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884561/. Disponible en: 10.1111/j.1476-5381.2009.00503_6.x.
Stauber, Tobias; Novarino, Gaia; Jentsch, Thomas J.; Alvarez-Leefmans, F. Javier; Delpire, Eric (2010) Chapter 12. En: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. pp. 209-231; San Diego: Academic Press; 978-0-12-374373-2; Consultado en: 2018/10/27/02:29:02. Disponible en: http://www.sciencedirect.com/science/article/pii/B9780123743732000121.
Storr-Paulsen, Allan; Singh, Amardeep; Jeppesen, Helene; Norregaard, Jens C.; Thulesen, Jesper (2014) Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. En: Acta Ophthalmologica. Vol. 92; No. 2; pp. 158-160; 1755375X; Consultado en: 2018/10/22/21:33:23. Disponible en: http://doi.wiley.com/10.1111/aos.12064. Disponible en: 10.1111/aos.12064.
Gees, Maarten; Colsoul, Barbara; Nilius, Bernd (2010) The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. En: Cold Spring Harbor Perspectives in Biology. Vol. 2; No. 10; 1943-0264; Consultado en: 2018/10/18/22:04:51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944357/. Disponible en: 10.1101/cshperspect.a003962.
Mergler, Stefan; Valtink, Monika; Takayoshi, Sumioka; Okada, Yuka; Miyajima, Masayasu; Saika, Shizuya; Reinach, Peter S. (2014) Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells. En: Ophthalmic Research. Vol. 52; No. 3; pp. 151-159; 0030-3747, 1423-0259; Consultado en: 2018/10/18/21:25:33. Disponible en: https://www.karger.com/Article/FullText/365334. Disponible en: 10.1159/000365334.
Zeng, Bo; Chen, Gui-Lan; Garcia-Vaz, Eliana; Bhandari, Sunil; Daskoulidou, Nikoleta; Berglund, Lisa M.; Jiang, Hongni; Hallett, Thomas; Zhou, Lu-Ping; Huang, Li; Xu, Zi-Hao; Nair, Viji; Nelson, Robert G.; Ju, Wenjun; Kretzler, Matthias; Atkin, Stephen L.; Gomez, Maria F.; Xu, Shang-Zhong (2017) ORAI channels are critical for receptor-mediated endocytosis of albumin. En: Nature Communications. Vol. 8; No. 1; pp. 1920 2041-1723; Consultado en: 2018/10/18/21:00:17. Disponible en: https://www.nature.com/articles/s41467-017-02094-y. Disponible en: 10.1038/s41467-017-02094-y.
Mergler, S.; Valtink, M.; Engelmann, K.; Pleyer, U. (2008) New Insights Into Electrophysiology and Functional Transient Receptor Potential (Trp) Channel Expression in the Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 13; pp. 3939-3939; 1552-5783; Consultado en: 2018/10/18/19:58:56. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2379333.
Mergler, Stefan; Valtink, Monika; Coulson-Thomas, Vivien Jane; Lindemann, Dirk; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2010) TRPV channels mediate temperature-sensing in human corneal endothelial cells. En: Experimental Eye Research. Vol. 90; No. 6; pp. 758-770; 1096-0007; Disponible en: 10.1016/j.exer.2010.03.010.
Torricelli, Andre A. M.; Wilson, Steven E. (2014) Cellular and extracellular matrix modulation of corneal stromal opacity. En: Experimental eye research. Vol. 0; pp. 151-160; 0014-4835; Consultado en: 2018/10/17/02:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259857/. Disponible en: 10.1016/j.exer.2014.09.013.
Robbins, Ashlee; Kurose, Masayuki; Winterson, Barbara J.; Meng, Ian D. (2012) Menthol Activation of Corneal Cool Cells Induces TRPM8-Mediated Lacrimation but Not Nociceptive Responses in Rodents. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7034-7042; 1552-5783; Disponible en: http://dx.doi.org/10.1167/iovs.12-10025. Disponible en: 10.1167/iovs.12-10025.
Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. En: Genome Biology. Vol. 8; No. 9; pp. R183 1465-6906; Consultado en: 2018/09/25/06:30:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375021/. Disponible en: 10.1186/gb-2007-8-9-r183.
Nygaard, Vegard; Rødland, Einar Andreas; Hovig, Eivind (2016) Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. En: Biostatistics (Oxford, England). Vol. 17; No. 1; pp. 29-39; 1465-4644; Consultado en: 2018/09/25/06:25:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679072/. Disponible en: 10.1093/biostatistics/kxv027.
Iwamoto, Takeo; Devoe, A. Gerard (1971) Electron Microscopic Studies on Fuchs' Combined Dystrophy : I. Posterior Portion of the Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 10; No. 1; pp. 9-28; 1552-5783; Consultado en: 2018/09/25/01:38:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2158325.
Patel, Sangita P.; Bourne, William M. (2009) Corneal Endothelial Cell Proliferation: A Function of Cell Density. En: Investigative ophthalmology & visual science. Vol. 50; No. 6; pp. 2742-2746; 0146-0404; Consultado en: 2018/08/28/20:52:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/. Disponible en: 10.1167/iovs.08-3002.
Corneal Endothelial Cell Proliferation: A Function of Cell Density. Consultado en: 2018/08/28/20:51:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/.
Joyce, Nancy C. (2003) Proliferative capacity of the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 3; pp. 359-389; 1350-9462
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe (2011) Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1828-1842; 0021-9541; Consultado en: 2018/07/17/02:41:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072442/. Disponible en: 10.1002/jcp.22514.
Reinach, Peter S.; Mergler, Stefan; Okada, Yuka; Saika, Shizuya (2015) Ocular transient receptor potential channel function in health and disease. En: BMC Ophthalmology. Vol. 15; No. 1; pp. 153 1471-2415; Consultado en: 2018/07/16/18:30:34. Disponible en: https://doi.org/10.1186/s12886-015-0135-7. Disponible en: 10.1186/s12886-015-0135-7.
Venkatachalam, Kartik; Montell, Craig (2007) TRP Channels. En: Annual review of biochemistry. Vol. 76; pp. 387-417; 0066-4154; Consultado en: 2018/07/16/16:27:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196875/. Disponible en: 10.1146/annurev.biochem.75.103004.142819.
TRP Channels | Annual Review of Biochemistry. Consultado en: 2018/07/16/16:25:31. Disponible en: https://www.annualreviews.org/doi/abs/10.1146/annurev.biochem.75.103004.142819?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&journalCode=biochem.
Lopez, Jose J.; Albarran, Letizia; Gómez, Luis J.; Smani, Tarik; Salido, Gines M.; Rosado, Juan A. (2016) Molecular modulators of store-operated calcium entry. En: Biochimica et Biophysica Acta (BBA). Vol. 1863; No. 8; pp. 2037-2043; 0167-4889; Consultado en: 2018/06/06/13:40:06. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488916301240. Disponible en: 10.1016/j.bbamcr.2016.04.024.
Schmedt, Thore; Silva, Mariana Mazzini; Ziaei, Alireza; Jurkunas, Ula (2012) Molecular Bases of Corneal Endothelial Dystrophies. En: Experimental Eye Research. Vol. 95; No. 1; pp. 24-34; 0014-4835; Consultado en: 2018/06/06/13:01:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273549/. Disponible en: 10.1016/j.exer.2011.08.002.
Putney, James W.; Steinckwich-Besançon, Natacha; Numaga-Tomita, Takuro; Davis, Felicity M.; Desai, Pooja N.; D’Agostin, Diane M.; Wu, Shilan; Bird, Gary S. (2017) The Functions of Store-operated Calcium Channels. En: Biochimica et biophysica acta. Vol. 1864; No. 6; pp. 900-906; 0006-3002; Consultado en: 2018/06/03/22:55:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420336/. Disponible en: 10.1016/j.bbamcr.2016.11.028.
Mergler, Stefan; Valtink, Monika; Taetz, Katrin; Sahlmüller, Monika; Fels, Gabriele; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2011) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. En: Experimental Eye Research. Vol. 93; No. 5; pp. 710-719; 1096-0007; Disponible en: 10.1016/j.exer.2011.09.021.
Prakriya, Murali; Lewis, Richard S. (2015) Store-Operated Calcium Channels. En: Physiological Reviews. Vol. 95; No. 4; pp. 1383-1436; 0031-9333; Consultado en: 2018/06/03/22:36:14. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00020.2014. Disponible en: 10.1152/physrev.00020.2014.
Hong, Show-Jen; Wu, Kwou-Yeung; Wang, Hwei-Zu; Fong, Jim. C (2003) Change of Cytosolic Ca2+ Mobility in Cultured Bovine Corneal Endothelial Cells by Endothelin-1. En: Journal of Ocular Pharmacology and Therapeutics. Vol. 19; No. 1; pp. 1-9; 1080-7683; Consultado en: 2018/06/03/02:56:10. Disponible en: https://www.liebertpub.com/doi/abs/10.1089/108076803762718060. Disponible en: 10.1089/108076803762718060.
Mergler, Stefan; Dannowski, Haike; Bednarz, Jürgen; Engelmann, Katrin; Hartmann, Christian; Pleyer, Uwe (2003) Calcium influx induced by activation of receptor tyrosine kinases in SV40-transfected human corneal endothelial cells. En: Experimental Eye Research. Vol. 77; No. 4; pp. 485-495; 0014-4835
Harrison, Theresa A.; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang; Defoe, Dennis M. (2016) Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area. En: Molecular Vision. Vol. 22; pp. 31-39; 1090-0535; Consultado en: 2018/06/03/00:10:48. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814271/.
Meeting, Kyoto Cornea Club (1997) Current Opinions in the Kyoto Cornea Club: Proceedings of the First Annual Meeting of the Kyoto Cornea Club, Kyoto, Japan, December 1-2, 1995. pp. 108 : Kugler Publications; 978-90-6299-138-9
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X, 1347-4715; Consultado en: 2019/02/04/16:53:41. Disponible en: http://link.springer.com/10.1007/s12199-007-0019-4. Disponible en: 10.1007/s12199-007-0019-4.
Bresgen, Nikolaus; Eckl, Peter (2015) Oxidative Stress and the Homeodynamics of Iron Metabolism. En: Biomolecules. Vol. 5; No. 2; pp. 808-847; 2218-273X; Consultado en: 2019/02/04/16:50:26. Disponible en: http://www.mdpi.com/2218-273X/5/2/808. Disponible en: 10.3390/biom5020808.
Glaser, Nicole; Little, Christopher; Lo, Weei; Cohen, Michael; Tancredi, Daniel; Wulff, Heike; O'Donnell, Martha (2017) Treatment with the KCa3.1 inhibitor TRAM-34 during diabetic ketoacidosis reduces inflammatory changes in the brain: TRAM-34 reduces DKA-related brain inflammation. En: Pediatric Diabetes. Vol. 18; No. 5; pp. 356-366; 1399543X; Consultado en: 2019/02/01/17:22:20. Disponible en: http://doi.wiley.com/10.1111/pedi.12396. Disponible en: 10.1111/pedi.12396.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) Role of the potassium channel KCa3.1 in diabetic nephropathy. En: Clinical Science. Vol. 127; No. 7; pp. 423-433; 0143-5221, 1470-8736; Consultado en: 2019/02/01/17:01:29. Disponible en: http://clinsci.org/lookup/doi/10.1042/CS20140075. Disponible en: 10.1042/CS20140075.
Tandon, A.; Tovey, J. C. K.; Sharma, A.; Gupta, R.; Mohan, R. R. (2010) Role of transforming growth factor Beta in corneal function, biology and pathology. En: Current Molecular Medicine. Vol. 10; No. 6; pp. 565-578; 1875-5666
Kaji, Y. (2005) Prevention of diabetic keratopathy. En: The British Journal of Ophthalmology. Vol. 89; No. 3; pp. 254-255; 0007-1161; Disponible en: 10.1136/bjo.2004.055541.
Thomas, Merlin C.; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A. M.; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E. (2015) Diabetic kidney disease. En: Nature Reviews Disease Primers. pp. 15018 2056-676X; Consultado en: 2019/02/01/15:47:16. Disponible en: http://www.nature.com/articles/nrdp201518. Disponible en: 10.1038/nrdp.2015.18.
Yan, Liang-Jun (2018) Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. En: Animal Models and Experimental Medicine. Vol. 1; No. 1; pp. 7-13; 2576-2095; Disponible en: 10.1002/ame2.12001.
Forbes, Josephine M.; Cooper, Mark E. (2013) Mechanisms of diabetic complications. En: Physiological Reviews. Vol. 93; No. 1; pp. 137-188; 1522-1210; Disponible en: 10.1152/physrev.00045.2011.
Goyer, Benjamin; Thériault, Mathieu; Gendron, Sébastien P.; Brunette, Isabelle; Rochette, Patrick J.; Proulx, Stéphanie (2018) Extracellular Matrix and Integrin Expression Profiles in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Model. En: Tissue Engineering. Part A. Vol. 24; No. 7-8; pp. 607-615; 1937-335X; Disponible en: 10.1089/ten.TEA.2017.0128.
Okumura, Naoki; Minamiyama, Ryuki; Ho, Leona Ty; Kay, EunDuck P.; Kawasaki, Satoshi; Tourtas, Theofilos; Schlötzer-Schrehardt, Ursula; Kruse, Friedrich E.; Young, Robert D.; Quantock, Andrew J.; Kinoshita, Shigeru; Koizumi, Noriko (2015) Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. En: Laboratory Investigation; a Journal of Technical Methods and Pathology. Vol. 95; No. 11; pp. 1291-1304; 1530-0307; Disponible en: 10.1038/labinvest.2015.111.
Cui, Zekai; Zeng, Qiaolang; Guo, Yonglong; Liu, Shiwei; Wang, Peiyuan; Xie, Mengyuan; Chen, Jiansu; Krahe, Ralf (2018) Pathological molecular mechanism of symptomatic late-onset Fuchs endothelial corneal dystrophy by bioinformatic analysis. En: PLOS ONE. Vol. 13; No. 5; pp. e0197750 1932-6203; Consultado en: 2019/02/01/04:18:13. Disponible en: http://dx.plos.org/10.1371/journal.pone.0197750. Disponible en: 10.1371/journal.pone.0197750.
Meekins, Landon C.; Rosado-Adames, Noel; Maddala, Rupalatha; Zhao, Jiagang J.; Rao, Ponugoti V.; Afshari, Natalie A. (2016) Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In Vitro and In Vivo Models. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 15; pp. 6731 1552-5783; Consultado en: 2019/02/01/04:03:47. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-20414. Disponible en: 10.1167/iovs.16-20414.
Soh, Yu Qiang; Peh, Gary; George, Benjamin Lawrence; Seah, Xin Yi; Primalani, Nishal Kishinchand; Adnan, Khadijah; Mehta, Jodhbir Singh (2016) Predicative Factors for Corneal Endothelial Cell Migration. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 2; pp. 338 1552-5783; Consultado en: 2019/02/01/00:13:38. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-18300. Disponible en: 10.1167/iovs.15-18300.
Li, Shimin; Kim, Edward; Bonanno, Joseph A. (2016) Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 1; pp. C116-C126; 0363-6143, 1522-1563; Consultado en: 2019/01/31/23:49:04. Disponible en: http://www.physiology.org/doi/10.1152/ajpcell.00095.2016. Disponible en: 10.1152/ajpcell.00095.2016.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H + Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Opthalmology & Visual Science. Vol. 53; No. 4; pp. 2020 1552-5783; Consultado en: 2019/01/31/23:43:55. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.12-9475. Disponible en: 10.1167/iovs.12-9475.
Gabelt, B'Ann True; Paul L. Kaufman; Production and Flow of Aqueous Humor. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0
Riordan-Eva, Paul; Riordan-Eva, Paul; Augsburger, James J. (2017) Anatomy & Embryology of the Eye. En: Vaughan & Asbury's General Ophthalmology, 19e. No. Book, Section; New York, NY: McGraw-Hill Education; Consultado en: 2019/01/30/. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1144466589.
Doutch, James J.; Quantock, Andrew J.; Joyce, Nancy C.; Meek, Keith M. (2012) Ultraviolet Light Transmission through the Human Corneal Stroma Is Reduced in the Periphery. En: Biophysical Journal. Vol. 102; No. 6; pp. 1258-1264; 00063495; Consultado en: 2019/01/30/17:36:55. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0006349512002263. Disponible en: 10.1016/j.bpj.2012.02.023.
Shih, K. Co; Lam, K. S.-L.; Tong, L. (2017) A systematic review on the impact of diabetes mellitus on the ocular surface. En: Nutrition & Diabetes. Vol. 7; No. 3; pp. e251 2044-4052; Disponible en: 10.1038/nutd.2017.4.
A systematic review on the impact of diabetes mellitus on the ocular surface | Nutrition & Diabetes. Consultado en: 2019/01/27/23:42:54. Disponible en: https://www.nature.com/articles/nutd20174.
Diabetes. Consultado en: 2019/01/27/23:04:50. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes.
Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair. Consultado en: 2019/01/10/01:22:33. Disponible en: https://www.sciencedirect.com/science/article/pii/S1569199315001022.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) High Glucose Induces CCL20 in Proximal Tubular Cells via Activation of the KCa3.1 Channel. En: PLOS ONE. Vol. 9; No. 4; pp. e95173 1932-6203; Consultado en: 2019/01/10/01:22:04. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095173. Disponible en: 10.1371/journal.pone.0095173.
Huang, Xi; Jan, Lily Yeh (2014) Targeting potassium channels in cancer. En: The Journal of Cell Biology. Vol. 206; No. 2; pp. 151-162; 1540-8140; Disponible en: 10.1083/jcb.201404136.
Shao, Zhifei; Makinde, Toluwalope O.; Agrawal, Devendra K. (2011) Calcium-Activated Potassium Channel KCa3.1 in Lung Dendritic Cell Migration. En: American Journal of Respiratory Cell and Molecular Biology. Vol. 45; No. 5; pp. 962-968; 1044-1549; Consultado en: 2019/01/10/01:17:33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262686/. Disponible en: 10.1165/rcmb.2010-0514OC.
Suarez, Jorge; Hu, Yong; Makino, Ayako; Fricovsky, Eduardo; Wang, Hong; Dillmann, Wolfgang H. (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. En: American Journal of Physiology-Cell Physiology. Vol. 295; No. 6; pp. C1561-C1568; 0363-6143; Consultado en: 2018/12/14/09:47:18. Disponible en: https://www.physiology.org/doi/full/10.1152/ajpcell.00076.2008. Disponible en: 10.1152/ajpcell.00076.2008.
Lu, Luo (2006) Stress-induced corneal epithelial apoptosis mediated by K+ channel activation. En: Progress in Retinal and Eye Research. Vol. 25; No. 6; pp. 515-538; 1350-9462; Disponible en: 10.1016/j.preteyeres.2006.07.004.
Kernt, Marcus; Hirneiss, C.; Neubauer, A. S.; Kampik, A. (2010) Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP). En: The British Journal of Ophthalmology. Vol. 94; No. 7; pp. 940-946; 1468-2079; Disponible en: 10.1136/bjo.2009.165092.
Brownlee, Michael (2005) The pathobiology of diabetic complications: a unifying mechanism. En: Diabetes. Vol. 54; No. 6; pp. 1615-1625; 0012-1797
Ichim, Gabriel; Lopez, Jonathan; Ahmed, Shafiq U.; Muthalagu, Nathiya; Giampazolias, Evangelos; Delgado, M. Eugenia; Haller, Martina; Riley, Joel S.; Mason, Susan M.; Athineos, Dimitris; Parsons, Melissa J.; van de Kooij, Bert; Bouchier-Hayes, Lisa; Chalmers, Anthony J.; Rooswinkel, Rogier W.; Oberst, Andrew; Blyth, Karen; Rehm, Markus; Murphy, Daniel J.; Tait, Stephen W.G. (2015) Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. En: Molecular Cell. Vol. 57; No. 5; pp. 860-872; 10972765; Consultado en: 2018/11/26/14:33:48. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1097276515000192. Disponible en: 10.1016/j.molcel.2015.01.018.
Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. En: Science (New York, N.Y.). Vol. 324; No. 5923; pp. 102-105; 1095-9203; Disponible en: 10.1126/science.1171091.
Vanden Berghe, T.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C. J.; Brunk, U. T.; Declercq, W.; Vandenabeele, P. (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. En: Cell Death and Differentiation. Vol. 17; No. 6; pp. 922-930; 1476-5403; Disponible en: 10.1038/cdd.2009.184.
Marchitti, Satori A; Chen, Ying; Thompson, David C; Vasiliou, Vasilis (2011) Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes:. En: Eye & Contact Lens: Science & Clinical Practice. Vol. 37; No. 4; pp. 206-213; 1542-2321; Consultado en: 2018/11/15/13:11:40. Disponible en: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00140068-201107000-00007. Disponible en: 10.1097/ICL.0b013e3182212642.
Nita, Małgorzata; Grzybowski, Andrzej (2016) The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. En: Oxidative Medicine and Cellular Longevity. Vol. 2016; pp. 1-23; 1942-0900, 1942-0994; Consultado en: 2018/11/15/12:57:37. Disponible en: http://www.hindawi.com/journals/omcl/2016/3164734/. Disponible en: 10.1155/2016/3164734.
Zhu, Cheng; Joyce, Nancy C. (2004) Proliferative response of corneal endothelial cells from young and older donors. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 6; pp. 1743-1751; 0146-0404
Senoo, T.; Joyce, N. C. (2000) Cell cycle kinetics in corneal endothelium from old and young donors. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 3; pp. 660-667; 0146-0404
Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Constantinos (2009) 8-hydroxy-2'-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. En: Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. Vol. 27; No. 2; pp. 120-139; 1532-4095; Disponible en: 10.1080/10590500902885684.
Joyce, Nancy C.; Zhu, Cheng C.; Harris, Deshea L. (2009) Relationship among Oxidative Stress, DNA Damage, and Proliferative Capacity in Human Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 5; pp. 2116-2122; 1552-5783; Consultado en: 2018/11/15/04:08:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2126584. Disponible en: 10.1167/iovs.08-3007.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/11/05/04:27:01. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Paulais, Marc; Lachheb, Sahran; Teulon, Jacques (2006) A Na+-and Cl−-activated K+ Channel in the Thick Ascending Limb of Mouse Kidney. En: The Journal of General Physiology. Vol. 127; No. 2; pp. 205-215; 0022-1295, 1540-7748; Consultado en: 2018/11/05/04:22:14. Disponible en: http://jgp.rupress.org/content/127/2/205. Disponible en: 10.1085/jgp.200509360.
Hayashi, Mikio; Wang, Jing; Hede, Susanne E.; Novak, Ivana (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 2; pp. C151-159; 1522-1563; Disponible en: 10.1152/ajpcell.00089.2012.
Hipfner, David R.; Cohen, Stephen M. (2003) The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development. En: PLoS biology. Vol. 1; No. 2; pp. E35 1545-7885; Disponible en: 10.1371/journal.pbio.0000035.
Dolga, A M; Terpolilli, N; Kepura, F; Nijholt, I M; Knaus, H-G; D'Orsi, B; Prehn, J H M; Eisel, U L M; Plant, T; Plesnila, N; Culmsee, C (2011) KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. En: Cell Death & Disease. Vol. 2; No. 4; pp. e147 2041-4889; Consultado en: 2018/11/05/03:17:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122061/. Disponible en: 10.1038/cddis.2011.30.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology. Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-493; 1522-1539; Disponible en: 10.1152/ajpheart.00642.2012.
Tajhya, Rajeev B.; Hu, Xueyou; Tanner, Mark R.; Huq, Redwan; Kongchan, Natee; Neilson, Joel R.; Rodney, George G.; Horrigan, Frank T.; Timchenko, Lubov T.; Beeton, Christine (2016) Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. En: Cell Death & Disease. Vol. 7; No. 10; pp. e2426 2041-4889; Disponible en: 10.1038/cddis.2016.324.
Potier, M; Chantome, A; Joulin, V; Girault, A; Roger, S; Besson, P; Jourdan, M-L; LeGuennec, J-Y; Bougnoux, P; Vandier, C (2011) The SK3/KCa2.3 potassium channel is a new cellular target for edelfosine. En: British Journal of Pharmacology. Vol. 162; No. 2; pp. 464-479; 0007-1188; Consultado en: 2018/11/05/02:33:22. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031066/. Disponible en: 10.1111/j.1476-5381.2010.01044.x.
Schwab, Albrecht; Fabian, Anke; Hanley, Peter J.; Stock, Christian (2012) Role of Ion Channels and Transporters in Cell Migration. En: Physiological Reviews. Vol. 92; No. 4; pp. 1865-1913; 0031-9333; Consultado en: 2018/11/04/22:04:35. Disponible en: https://www.physiology.org/doi/full/10.1152/physrev.00018.2011. Disponible en: 10.1152/physrev.00018.2011.
Ouadid-Ahidouch, Halima; Ahidouch, Ahmed (2013) K+ channels and cell cycle progression in tumor cells. En: Frontiers in Physiology. Vol. 4; 1664-042X; Consultado en: 2018/11/04/21:48:41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747328/. Disponible en: 10.3389/fphys.2013.00220.
Santi, Celia M.; Butler, Alice; Kuhn, Julia; Wei, Aguan; Salkoff, Lawrence (2009) Bovine and Mouse SLO3 K+ Channels. En: The Journal of Biological Chemistry. Vol. 284; No. 32; pp. 21589-21598; 0021-9258; Consultado en: 2018/11/04/17:56:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755883/. Disponible en: 10.1074/jbc.M109.015040.
Song, Penghong; Du, Yehui; Song, Wenfeng; Chen, Hao; Xuan, Zefeng; Zhao, Long; Chen, Jun; Chen, Jian; Guo, Danjing; Jin, Cheng; Zhao, Yongchao; Tuo, Biguang; Zheng, Shusen (2017) KCa3.1 as an Effective Target for Inhibition of Growth and Progression of Intrahepatic Cholangiocarcinoma. En: Journal of Cancer. Vol. 8; No. 9; pp. 1568-1578; 1837-9664; Consultado en: 2018/11/04/17:46:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535712/. Disponible en: 10.7150/jca.18697.
Jackson, William F. (2010) KV1.3: A new therapeutic target to control vascular smooth muscle cell proliferation. En: Arteriosclerosis, thrombosis, and vascular biology. Vol. 30; No. 6; pp. 1073-1074; 1079-5642; Consultado en: 2018/11/04/05:42:24. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891047/. Disponible en: 10.1161/ATVBAHA.110.206565.
Vandorpe, D. H.; Shmukler, B. E.; Jiang, L.; Lim, B.; Maylie, J.; Adelman, J. P.; de Franceschi, L.; Cappellini, M. D.; Brugnara, C.; Alper, S. L. (1998) cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. En: The Journal of Biological Chemistry. Vol. 273; No. 34; pp. 21542-21553; 0021-9258
Chandy, K. George; Wulff, Heike; Beeton, Christine; Pennington, Michael; Gutman, George A.; Cahalan, Michael D. (2004) K+ channels as targets for specific immunomodulation. En: Trends in Pharmacological Sciences. Vol. 25; No. 5; pp. 280-289; 0165-6147; Disponible en: 10.1016/j.tips.2004.03.010.
Wei, Aguan D.; Gutman, George A.; Aldrich, Richard; Chandy, K. George; Grissmer, Stephan; Wulff, Heike (2005) International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. En: Pharmacological Reviews. Vol. 57; No. 4; pp. 463-472; 0031-6997, 1521-0081; Consultado en: 2018/11/04/03:53:18. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463. Disponible en: 10.1124/pr.57.4.9.
International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels | Pharmacological Reviews. Consultado en: 2018/11/04/03:17:27. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463.
Ha, Tal Soo; Heo, Moon-Sun; Park, Chul-Seung (2004) Functional Effects of Auxiliary β4-Subunit on Rat Large-Conductance Ca2+-Activated K+ Channel. En: Biophysical Journal. Vol. 86; No. 5; pp. 2871-2882; 0006-3495; Consultado en: 2018/11/04/03:04:15. Disponible en: http://www.sciencedirect.com/science/article/pii/S0006349504743398. Disponible en: 10.1016/S0006-3495(04)74339-8.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2018/11/03/22:56:19. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Mobasseri, Majid; Shirmohammadi, Masoud; Amiri, Tarlan; Vahed, Nafiseh; Hosseini Fard, Hossein; Ghojazadeh, Morteza (2020) Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. En: Health Promotion Perspectives. Vol. 10; No. 2; pp. 98-115; 2228-6497; Consultado en: 2020/08/17/12:24:10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146037/. Disponible en: 10.34172/hpp.2020.18.
Lindner, L. M. E.; Rathmann, W.; Rosenbauer, J. (2018) Inequalities in glycaemic control, hypoglycaemia and diabetic ketoacidosis according to socio-economic status and area-level deprivation in Type 1 diabetes mellitus: a systematic review. En: Diabetic Medicine. Vol. 35; No. 1; pp. 12-32; 1464-5491; Consultado en: 2020/08/17/13:14:29. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.13519. Disponible en: 10.1111/dme.13519.
Pandova, Maya Georgieva (2019) Diabetic Retinopathy and Blindness: An Epidemiological Overview. En: Visual Impairment and Blindness. Consultado en: 2020/08/17/13:17:43. Disponible en: https://www.intechopen.com/online-first/diabetic-retinopathy-and-blindness-an-epidemiological-overview. Disponible en: 10.5772/intechopen.88756.
Fang, Michael; Echouffo-Tcheugui, Justin B.; Selvin, Elizabeth (2020) Burden of Complications in U.S. Adults With Young-Onset Type 2 or Type 1 Diabetes. En: Diabetes Care. Vol. 43; No. 4; pp. e47-e49; 0149-5992, 1935-5548; Consultado en: 2020/08/17/14:00:48. Disponible en: https://care.diabetesjournals.org/content/43/4/e47. Disponible en: 10.2337/dc19-2394.
Jeganathan, V. Swetha E.; Wang, Jie Jin; Wong, Tien Yin (2008) Ocular Associations of Diabetes Other Than Diabetic Retinopathy. En: Diabetes Care. Vol. 31; No. 9; pp. 1905-1912; 0149-5992; Consultado en: 2020/08/17/14:39:16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518369/. Disponible en: 10.2337/dc08-0342.
Tuft, S. J.; Coster, D. J. (1990) The corneal endothelium. En: Eye. Vol. 4; No. 3; pp. 389-424; 1476-5454; Consultado en: 2020/08/19/23:08:22. Disponible en: https://www.nature.com/articles/eye199053. Disponible en: 10.1038/eye.1990.53.
Cochrane Handbook for Systematic Reviews of Interventions. Consultado en: 2020/09/08/17:55:35. Disponible en: /handbook/current.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2020/09/18/10:21:15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:44:14. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:46:25. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Lass, Jonathan H.; Beck, Roy W.; Benetz, Beth Ann; Dontchev, Mariya; Gal, Robin L.; Holland, Edward J.; Kollman, Craig; Mannis, Mark J.; Price, Francis; Raber, Irving; Stark, Walter; Stulting, R. Doyle; Sugar, Alan; Group, for the Cornea Donor Study Investigator (2011) Baseline Factors Related to Endothelial Cell Loss Following Penetrating Keratoplasty. En: Archives of Ophthalmology. Vol. 129; No. 9; pp. 1149-1154; 0003-9950; Consultado en: 2020/09/18/10:52:03. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/1106439. Disponible en: 10.1001/archophthalmol.2011.102.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2020/09/18/12:54:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Singh, Harpreet; Stefani, Enrico; Toro, Ligia (2012) Intracellular BKCa (iBKCa) channels. En: The Journal of Physiology. Vol. 590; No. 23; pp. 5937-5947; 1469-7793; Consultado en: 2020/09/18/23:30:55. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2011.215533. Disponible en: 10.1113/jphysiol.2011.215533.
Yan, Jiusheng; Aldrich, Richard W. (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. En: Proceedings of the National Academy of Sciences. Vol. 109; No. 20; pp. 7917-7922; 0027-8424, 1091-6490; Consultado en: 2020/10/29/17:29:52. Disponible en: https://www.pnas.org/content/109/20/7917. Disponible en: 10.1073/pnas.1205435109.
Skyler, Jay S.; Bakris, George L.; Bonifacio, Ezio; Darsow, Tamara; Eckel, Robert H.; Groop, Leif; Groop, Per-Henrik; Handelsman, Yehuda; Insel, Richard A.; Mathieu, Chantal; McElvaine, Allison T.; Palmer, Jerry P.; Pugliese, Alberto; Schatz, Desmond A.; Sosenko, Jay M.; Wilding, John P. H.; Ratner, Robert E. (2017) Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. En: Diabetes. Vol. 66; No. 2; pp. 241-255; 0012-1797, 1939-327X; Consultado en: 2020/12/06/16:44:25. Disponible en: https://diabetes.diabetesjournals.org/content/66/2/241. Disponible en: 10.2337/db16-0806.
Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo (2010) Role of Insulin in Regulation of Na+-/K+-Dependent ATPase Activity and Pump Function in Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 51; No. 8; pp. 3935-3942; 1552-5783; Consultado en: 2020/12/06/23:52:28. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2126373. Disponible en: 10.1167/iovs.09-4027.
Cernea, Simona; Dobreanu, Minodora (2013) Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. En: Biochemia Medica. Vol. 23; No. 3; pp. 266-280; 1330-0962; Disponible en: 10.11613/bm.2013.033.
McCarey, Bernard E.; Edelhauser, Henry F.; Lynn, Michael J. (2008) Review of Corneal Endothelial Specular Microscopy for FDA Clinical Trials of Refractive Procedures, Surgical Devices and New Intraocular Drugs and Solutions. En: Cornea. Vol. 27; No. 1; pp. 1-16; 0277-3740; Consultado en: 2020/12/11/01:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062434/. Disponible en: 10.1097/ICO.0b013e31815892da.
Van den Bogerd, Bert; Dhubhghaill, Sorcha Ní; Koppen, Carina; Tassignon, Marie-José; Zakaria, Nadia (2018) A review of the evidence for in vivo corneal endothelial regeneration. En: Survey of Ophthalmology. Vol. 63; No. 2; pp. 149-165; 0039-6257; Consultado en: 2020/12/14/16:17:25. Disponible en: http://www.sciencedirect.com/science/article/pii/S0039625717301054. Disponible en: 10.1016/j.survophthal.2017.07.004.
Powers, Alvin C.; Niswender, Kevin D.; Evans-Molina, Carmella; Jameson, J. Larry; Fauci, Anthony S.; Kasper, Dennis L.; Hauser, Stephen L.; Longo, Dan L.; Loscalzo, Joseph (2018) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2020/12/14/17:13:54. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1156520865.
Roszkowska, A. M.; Tringali, C. G.; Colosi, P.; Squeri, C. A.; Ferreri, G. (1999) Corneal endothelium evaluation in type I and type II diabetes mellitus. En: Ophthalmologica. Journal International D'ophtalmologie. International Journal of Ophthalmology. Zeitschrift Fur Augenheilkunde. Vol. 213; No. 4; pp. 258-261; 0030-3755; Disponible en: 10.1159/000027431.
Goldstein, Andrew S.; Janson, Ben J.; Skeie, Jessica M.; Ling, Jennifer J.; Greiner, Mark A. (2020) The effects of diabetes mellitus on the corneal endothelium: A review. En: Survey of Ophthalmology. Vol. 65; No. 4; pp. 438-450; 1879-3304; Disponible en: 10.1016/j.survophthal.2019.12.009.
Lin, Hung-Yu; Weng, Shao-Wen; Chang, Yen-Hsiang; Su, Yu-Jih; Chang, Chih-Min; Tsai, Chia-Jen; Shen, Feng-Chih; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Lin, Ching-Yi; Wang, Pei-Wen (2018) The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. En: Oxidative Medicine and Cellular Longevity. Consultado en: 2020/12/16/00:07:04. Disponible en: https://www.hindawi.com/journals/omcl/2018/7514383/.
Ottawa Hospital Research Institute. Consultado en: 2021/01/28/13:37:00. Disponible en: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
American Diabetes Association (2020) Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. En: Diabetes Care. Vol. 43; No. Supplement 1; pp. S98-S110; 0149-5992, 1935-5548; Consultado en: 2021/02/10/18:34:20. Disponible en: https://care.diabetesjournals.org/content/43/Supplement_1/S98. Disponible en: 10.2337/dc20-S009.
Roo, An-Katrien De; Wouters, Jasper; Govaere, Olivier; Foets, Beatrijs; Oord, Joost J. van den (2017) Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 1; pp. 670-681; 1552-5783; Consultado en: 2021/02/12/16:01:13. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2600835. Disponible en: 10.1167/iovs.16-20880.
Anbar, Mohamed; Ammar, Hatem; Mahmoud, Ramadan A. (2016) Corneal Endothelial Morphology in Children with Type 1 Diabetes. En: Journal of Diabetes Research. Vol. 2016; 2314-6745; Consultado en: 2021/02/17/19:59:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939174/. Disponible en: 10.1155/2016/7319047.
Calvo-Maroto, Ana M.; Cerviño, Alejandro; Perez-Cambrodí, Rafael J.; García-Lázaro, Santiago; Sanchis-Gimeno, Juan A. (2015) Quantitative corneal anatomy: evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. En: Ophthalmic and Physiological Optics. Vol. 35; No. 3; pp. 293-298; 1475-1313; Consultado en: 2021/02/17/21:06:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/opo.12191. Disponible en: https://doi.org/10.1111/opo.12191.
Cankurtaran, Veysel; Tekin, Kemal (2019) Cumulative Effects of Smoking and Diabetes Mellitus on Corneal Endothelial Cell Parameters. En: Cornea. Vol. 38; No. 1; pp. 78-83; 1536-4798; Disponible en: 10.1097/ICO.0000000000001718.
Changes in Choroidal Thickness and Corneal Parameters in Diabetic Eyes. Consultado en: 2021/02/17/21:47:35. Disponible en: https://journals.sagepub.com/doi/abs/10.5301/ejo.5000677.
Baker, Peter; Fain, Pam; Kahles, Heinrich; Yu, Liping; Hutton, John; Wenzlau, Janet; Rewers, Marian; Badenhoop, Klaus; Eisenbarth, George (2012) Genetic Determinants of 21-Hydroxylase Autoantibodies Amongst Patients of the Type 1 Diabetes Genetics Consortium. En: The Journal of Clinical Endocrinology & Metabolism. Vol. 97; No. 8; pp. E1573-E1578; 0021-972X; Consultado en: 2021/02/19/15:37:51. Disponible en: https://doi.org/10.1210/jc.2011-2824. Disponible en: 10.1210/jc.2011-2824.
Morran, Michael P.; Vonberg, Andrew; Khadra, Anmar; Pietropaolo, Massimo (2015) Immunogenetics of Type 1 Diabetes Mellitus. En: Molecular aspects of medicine. Vol. 42; pp. 42-60; 0098-2997; Consultado en: 2021/02/19/18:08:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548800/. Disponible en: 10.1016/j.mam.2014.12.004.
Iwata, M.; Kiritoshi, A.; Roat, M. I.; Yagihashi, A.; Thoft, R. A. (1992) Regulation of HLA class II antigen expression on cultured corneal epithelium by interferon-gamma. En: Investigative Ophthalmology & Visual Science. Vol. 33; No. 9; pp. 2714-2721; 0146-0404
Donnelly, J. J.; Li, W. Y.; Rockey, J. H.; Prendergast, R. A. (1985) Induction of class II (Ia) alloantigen expression on corneal endothelium in vivo and in vitro. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 575-580; 1552-5783; Consultado en: 2021/02/19/21:13:20. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177064.
Young, E.; Stark, W. J.; Prendergast, R. A. (1985) Immunology of corneal allograft rejection: HLA-DR antigens on human corneal cells. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 571-574; 1552-5783; Consultado en: 2021/02/19/21:19:07. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177105.
Zhang, Jie; McGhee, Charles N. J.; Patel, Dipika V. (2019) The Molecular Basis of Fuchs’ Endothelial Corneal Dystrophy. En: Molecular Diagnosis & Therapy. Vol. 23; No. 1; pp. 97-112; 1179-2000; Consultado en: 2021/02/19/21:22:54. Disponible en: https://doi.org/10.1007/s40291-018-0379-z. Disponible en: 10.1007/s40291-018-0379-z.
Treseler, P. A.; Foulks, G. N.; Sanfilippo, F. (1984) The expression of HLA antigens by cells in the human cornea. En: American Journal of Ophthalmology. Vol. 98; No. 6; pp. 763-772; 0002-9394; Disponible en: 10.1016/0002-9394(84)90696-2.
Crotti, Chiara; Selmi, Carlo; Shoenfeld, Yehuda; Meroni, Pier Luigi; Gershwin, M. Eric (2014) Chapter 46. En: Autoantibodies (Third Edition). pp. 385-389; San Diego: Elsevier; 978-0-444-56378-1; Consultado en: 2021/02/19/22:57:55. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780444563781000460.
Lahdou, Imad; Engler, Christoph; Mehrle, Stefan; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Terness, Peter (2014) Role of Human Corneal Endothelial Cells in T-Cell–Mediated Alloimmune Attack In Vitro. En: Investigative Ophthalmology & Visual Science. Vol. 55; No. 3; pp. 1213-1221; 1552-5783; Consultado en: 2021/02/20/01:15:36. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2189465. Disponible en: 10.1167/iovs.13-11930.
Whikehart (1995) The inhibition of sodium, potassium-stimulated ATPase and corneal swelling: the role played by polyols. En: Journal of the American Optometric Association. Vol. 66; No. 6; pp. 331-333; 0003-0244; Consultado en: 2021/02/20/02:01:22. Disponible en: https://europepmc.org/article/med/7673590.
Busted, N; Olsen, T; Schmitz, O (1981) Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. En: The British Journal of Ophthalmology. Vol. 65; No. 10; pp. 687-690; 0007-1161; Consultado en: 2021/02/20/02:10:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1039638/.
Zhang, Kaikai; Zhao, Liangliang; Zhu, Chao; Nan, Weijin; Ding, Xinfen; Dong, Yuchen; Zhao, Meisheng (2021) The effect of diabetes on corneal endothelium: a meta-analysis. En: BMC Ophthalmology. Vol. 21; No. 1; pp. 78 1471-2415; Consultado en: 2021/02/20/02:31:55. Disponible en: https://doi.org/10.1186/s12886-020-01785-3. Disponible en: 10.1186/s12886-020-01785-3.
Differences in corneal thickness and corneal endothelium related to duration in Diabetes | Eye. Consultado en: 2021/02/27/23:25:31. Disponible en: https://www.nature.com/articles/6701868.
Lee, J. S.; Oum, B. S.; Choi, H. Y.; Lee, J. E.; Cho, B. M. (2006) Differences in corneal thickness and corneal endothelium related to duration in diabetes. En: Eye (London, England). Vol. 20; No. 3; pp. 315-318; 0950-222X; Disponible en: 10.1038/sj.eye.6701868.
Tk, Yoo; E, Oh (2019) Diabetes mellitus is associated with dry eye syndrome: a meta-analysis. En: International Ophthalmology. Vol. 39; No. 11; pp. 2611-2620; 0165-5701, 1573-2630; Consultado en: 2021/03/01/19:32:48. Disponible en: https://europepmc.org/article/med/31065905. Disponible en: 10.1007/s10792-019-01110-y.
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2017) Tear Levels of Insulin-Like Growth Factor Binding Protein 3 Correlate With Subbasal Nerve Plexus Changes in Patients With Type 2 Diabetes Mellitus. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 14; pp. 6105-6112; 1552-5783; Consultado en: 2021/03/01/19:40:54. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2665837. Disponible en: 10.1167/iovs.17-22425.
Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M. (2012) Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. En: The Ocular Surface. Vol. 10; No. 2; pp. 100-107; 1542-0124; Disponible en: 10.1016/j.jtos.2012.01.004.
Vujosevic, Stela; Muraca, Andrea; Alkabes, Micol; Villani, Edoardo; Cavarzeran, Fabiano; Rossetti, Luca; De Cillaʼ, Stefano (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. En: Retina (Philadelphia, Pa.). Vol. 39; No. 3; pp. 435-445; 1539-2864; Disponible en: 10.1097/IAE.0000000000001990.
Stem, Maxwell S.; Hussain, Munira; Lentz, Stephen I.; Raval, Nilesh; Gardner, Thomas W.; Pop-Busui, Rodica; Shtein, Roni M. (2014) Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. En: Journal of diabetes and its complications. Vol. 28; No. 5; pp. 658-661; 1056-8727; Consultado en: 2021/03/02/01:40:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146399/. Disponible en: 10.1016/j.jdiacomp.2014.06.007.
Tang, Yizhen; Chen, Xinyi; Zhang, Xiaobo; Tang, Qiaomei; Liu, Siyu; Yao, Ke (2017) Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. En: Scientific Reports. Vol. 7; 2045-2322; Consultado en: 2021/03/05/11:34:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658349/. Disponible en: 10.1038/s41598-017-14656-7.
Fong, Donald S.; Aiello, Lloyd; Gardner, Thomas W.; King, George L.; Blankenship, George; Cavallerano, Jerry D.; Ferris, Fredrick L.; Klein, Ronald (2004) Retinopathy in Diabetes. En: Diabetes Care. Vol. 27; No. suppl 1; pp. s84-s87; 0149-5992, 1935-5548; Consultado en: 2021/03/05/13:54:59. Disponible en: https://care.diabetesjournals.org/content/27/suppl_1/s84. Disponible en: 10.2337/diacare.27.2007.S84.
Costantini, E.; Touzeau, O.; Gaujoux, T.; Basli, E.; Kopito, R.; Borderie, V. M.; Laroche, L. (2009) Age-Related Changes in Central and Peripheral Corneal Thickness. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 13; pp. 5107-5107; 1552-5783; Consultado en: 2021/03/05/22:41:18. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2367476.
Abib, F. C.; Barreto Junior, J. (2001) Behavior of corneal endothelial density over a lifetime. En: Journal of Cataract and Refractive Surgery. Vol. 27; No. 10; pp. 1574-1578; 0886-3350; Disponible en: 10.1016/s0886-3350(01)00925-7.
Islam, Qamar Ul; Saeed, Muhammad Kamran; Mehboob, Mohammad Asim (2017) Age related changes in corneal morphological characteristics of healthy Pakistani eyes. En: Saudi Journal of Ophthalmology. Vol. 31; No. 2; pp. 86-90; 1319-4534; Consultado en: 2021/03/06/13:03:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436377/. Disponible en: 10.1016/j.sjopt.2017.02.009.
Zhao, Di; Cho, Juhee; Kim, Myung Hun; Friedman, David S.; Guallar, Eliseo (2015) Diabetes, Fasting Glucose, and the Risk of Glaucoma: A Meta-analysis. En: Ophthalmology. Vol. 122; No. 1; pp. 72-78; 0161-6420, 1549-4713; Consultado en: 2021/03/12/09:06:51. Disponible en: https://www.aaojournal.org/article/S0161-6420(14)00697-6/abstract. Disponible en: 10.1016/j.ophtha.2014.07.051.
Doughty, M. J.; Zaman, M. L. (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. En: Survey of Ophthalmology. Vol. 44; No. 5; pp. 367-408; 0039-6257; Disponible en: 10.1016/s0039-6257(00)00110-7.
Margo, Jordan A.; Whiting, Martha F.; Brown, Clayton H.; Hoover, Caroline K.; Munir, Wuqaas M. (2017) The Effect of Chronic Pulmonary Disease and Mechanical Ventilation on Corneal Donor Endothelial Cell Density and Transplant Suitability. En: American Journal of Ophthalmology. Vol. 183; pp. 65-70; 0002-9394; Consultado en: 2021/03/15/16:23:06. Disponible en: https://www.sciencedirect.com/science/article/pii/S000293941730377X. Disponible en: 10.1016/j.ajo.2017.08.023.
Magdum, Renu M.; Mutha, Neha; Maheshgauri, Rupali (2013) A study of corneal endothelial changes in soft contact lens wearers using non-contact specular microscopy. En: Medical Journal of Dr. D.Y. Patil University. Vol. 6; No. 3; pp. 245 0975-2870; Consultado en: 2021/03/15/16:59:08. Disponible en: https://www.mjdrdypu.org/article.asp?issn=0975-2870;year=2013;volume=6;issue=3;spage=245;epage=249;aulast=Magdum;type=0. Disponible en: 10.4103/0975-2870.114645.
Corneal endothelial cell density in glaucoma. Consultado en: 2021/03/15/17:14:55. Disponible en: https://europepmc.org/article/med/9143804.
Kheirkhah, Ahmad; Saboo, Ujwala S.; Abud, Tulio B.; Dohlman, Thomas H.; Arnoldner, Michael A.; Hamrah, Pedram; Dana, Reza (2015) Reduced Corneal Endothelial Cell Density in Patients with Dry Eye Disease. En: American journal of ophthalmology. Vol. 159; No. 6; pp. 1022 Consultado en: 2021/03/15/18:12:02. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427236/. Disponible en: 10.1016/j.ajo.2015.03.011.
Konstantopoulos, Spyros (2011) Fixed effects and variance components estimation in three-level meta-analysis. En: Research Synthesis Methods. Vol. 2; No. 1; pp. 61-76; 1759-2879; Disponible en: 10.1002/jrsm.35.
Viechtbauer, Wolfgang (2010) Conducting Meta-Analyses in R with the metafor Package. En: Journal of Statistical Software. Vol. 36; No. 1; pp. 1-48; 1548-7660; Consultado en: 2021/03/26/22:53:47. Disponible en: https://www.jstatsoft.org/index.php/jss/article/view/v036i03. Disponible en: 10.18637/jss.v036.i03.
R Core Team (2020); R: A language and environment for statistical computing. R Foundation for Statistical Computing. Consultado en: 2021/03/26/23:08:22. Disponible en: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006.
Kudva, Ajay A.; Lasrado, Adeline S.; Hegde, Sudhir; Kadri, Rajani; Devika, P.; Shetty, Akansha (2020) Corneal endothelial cell changes in diabetics versus age group matched nondiabetics after manual small incision cataract surgery. En: Indian Journal of Ophthalmology. Vol. 68; No. 1; pp. 72 0301-4738; Consultado en: 2021/03/29/10:13:00. Disponible en: https://www.ijo.in/article.asp?issn=0301-4738;year=2020;volume=68;issue=1;spage=72;epage=76;aulast=Kudva;type=0. Disponible en: 10.4103/ijo.IJO_406_19.
Gambato, Catia; Longhin, Evelyn; Catania, Anton Giulio; Lazzarini, Daniela; Parrozzani, Raffaele; Midena, Edoardo (2015) Aging and corneal layers: an in vivo corneal confocal microscopy study. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 253; No. 2; pp. 267-275; 1435-702X; Consultado en: 2021/04/03/12:31:21. Disponible en: https://doi.org/10.1007/s00417-014-2812-2. Disponible en: 10.1007/s00417-014-2812-2.
Niederer, R. L.; Perumal, D.; Sherwin, T.; McGhee, C. N. J. (2007) Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. En: The British Journal of Ophthalmology. Vol. 91; No. 9; pp. 1165-1169; 0007-1161; Disponible en: 10.1136/bjo.2006.112656.
Vassilev, Vassil S.; Mandai, Michiko; Yonemura, Shigenobu; Takeichi, Masatoshi (2012) Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7183-7193; 1552-5783; Consultado en: 2021/04/03/17:34:44. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2127685. Disponible en: 10.1167/iovs.12-9949.
Wang, Yan; Zhang, Hong-Tao; Su, Xing-Li; Deng, Xiu-Ling; Yuan, Bing-Xiang; Zhang, Wei; Wang, Xin-Feng; Yang, Yu-Bai (2010) Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance. En: Current Neurovascular Research. Vol. 7; No. 2; pp. 75-84; 1875-5739; Disponible en: 10.2174/156720210791184925.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2021/04/05/10:39:10. Disponible en: https://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Hage, Travis A.; Salkoff, Lawrence (2012) Sodium-Activated Potassium Channels Are Functionally Coupled to Persistent Sodium Currents. En: The Journal of Neuroscience. Vol. 32; No. 8; pp. 2714-2721; 0270-6474; Consultado en: 2021/04/05/14:03:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319674/. Disponible en: 10.1523/JNEUROSCI.5088-11.2012.
Yi, Fu; Ling, Tian-You; Lu, Tong; Wang, Xiao-Li; Li, Jingchao; Claycomb, William C.; Shen, Win-Kuang; Lee, Hon-Chi (2015) Down-regulation of the Small Conductance Calcium-activated Potassium Channels in Diabetic Mouse Atria*. En: Journal of Biological Chemistry. Vol. 290; No. 11; pp. 7016-7026; 0021-9258; Consultado en: 2021/04/05/20:57:36. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820767797. Disponible en: 10.1074/jbc.M114.607952.
Zhao, Li-Mei; Wang, Yan; Ma, Xiao-Zhen; Wang, Nan-Ping; Deng, Xiu-Ling (2014) Advanced glycation end products impair K(Ca)3.1-and K(Ca)2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries. En: Pflugers Archiv: European Journal of Physiology. Vol. 466; No. 2; pp. 307-317; 1432-2013; Disponible en: 10.1007/s00424-013-1324-y.
Gagnon, M. M.; Boisjoly, H. M.; Brunette, I.; Charest, M.; Amyot, M. (1997) Corneal endothelial cell density in glaucoma. En: Cornea. Vol. 16; No. 3; pp. 314-318; 0277-3740
Tarazona, Sonia; Furió-Tarí, Pedro; Turrà, David; Pietro, Antonio Di; Nueda, María José; Ferrer, Alberto; Conesa, Ana (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. En: Nucleic Acids Research. Vol. 43; No. 21; pp. e140-e140; 0305-1048; Consultado en: 2021/04/24/22:38:09. Disponible en: https://doi.org/10.1093/nar/gkv711. Disponible en: 10.1093/nar/gkv711.
DAVID Functional Annotation Bioinformatics Microarray Analysis. Consultado en: 2021/04/24/23:07:31. Disponible en: https://david.ncifcrf.gov/.
Yu, Tao; Deng, Chunyu; Wu, Ruobin; Guo, Huiming; Zheng, Shaoyi; Yu, Xiyong; Shan, Zhixin; Kuang, Sujuan; Lin, Qiuxiong (2012) Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. En: Life Sciences. Vol. 90; No. 5; pp. 219-227; 0024-3205; Consultado en: 2021/04/25/00:22:49. Disponible en: https://www.sciencedirect.com/science/article/pii/S0024320511005704. Disponible en: 10.1016/j.lfs.2011.11.008.
Bonito, B.; Sauter, D. R. P.; Schwab, A.; Djamgoz, M. B. A.; Novak, I. (2016) KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. En: Pflügers Archiv. Vol. 468; No. 11; pp. 1865-1875; 1432-2013; Consultado en: 2021/04/25/01:36:47. Disponible en: https://doi.org/10.1007/s00424-016-1891-9. Disponible en: 10.1007/s00424-016-1891-9.
Kopec, Ashley M.; Rivera, Phillip D.; Lacagnina, Michael J.; Hanamsagar, Richa; Bilbo, Staci D. (2017) Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. En: Journal of Neuroscience Methods. Vol. 280; pp. 64-76; 0165-0270; Consultado en: 2021/04/25/02:12:42. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165027017300389. Disponible en: 10.1016/j.jneumeth.2017.02.002.
Ion Transport Function of SLC4A11 in Corneal Endothelium | IOVS | ARVO Journals. Consultado en: 2021/05/09/22:00:06. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793.
Jalimarada, Supriya S.; Ogando, Diego G.; Vithana, Eranga N.; Bonanno, Joseph A. (2013) Ion Transport Function of SLC4A11 in Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 54; No. 6; pp. 4330-4340; 1552-5783; Consultado en: 2021/05/09/22:00:32. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793. Disponible en: 10.1167/iovs.13-11929.
Pedarzani, P.; Stocker, M. (2008) Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. En: Cellular and molecular life sciences: CMLS. Vol. 65; No. 20; pp. 3196-3217; 1420-682X; Disponible en: 10.1007/s00018-008-8216-x.
SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. Consultado en: 2021/05/09/22:12:02. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC3383402/.
Deignan, Jason; Luján, Rafael; Bond, Chris; Riegel, Arthur; Watanabe, Masahiko; Williams, John T.; Maylie, James; Adelman, John P. (2012) SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. En: Neuroscience. Vol. 217; pp. 67-76; 0306-4522; Consultado en: 2021/05/09/22:12:04. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383402/. Disponible en: 10.1016/j.neuroscience.2012.04.053.
Gu, Mingxia; Zhu, Yanrong; Yin, Xiaorong; Zhang, Dai-Min (2018) Small-conductance Ca 2+-activated K + channels: insights into their roles in cardiovascular disease. En: Experimental & Molecular Medicine. Vol. 50; No. 4; pp. 1-7; 2092-6413; Consultado en: 2021/05/09/22:24:50. Disponible en: https://www.nature.com/articles/s12276-018-0043-z. Disponible en: 10.1038/s12276-018-0043-z.
Lu, Ling; Timofeyev, Valeriy; Li, Ning; Rafizadeh, Sassan; Singapuri, Anil; Harris, Todd R.; Chiamvimonvat, Nipavan (2009) α-Actinin2 cytoskeletal protein is required for the functional membrane localization of a Ca2+-activated K+ channel (SK2 channel). En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 106; No. 43; pp. 18402-18407; 0027-8424; Consultado en: 2021/05/09/22:46:35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775294/. Disponible en: 10.1073/pnas.0908207106.
Kim, Tae Yun; Terentyeva, Radmila; Roder, Karim H. F.; Li, Weiyan; Liu, Man; Greener, Ian; Hamilton, Shanna; Polina, Iuliia; Murphy, Kevin R.; Clements, Richard T.; Dudley, Samuel C.; Koren, Gideon; Choi, Bum-Rak; Terentyev, Dmitry (2017) SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. En: Cardiovascular Research. Vol. 113; No. 3; pp. 343-353; 0008-6363; Consultado en: 2021/05/09/22:48:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852621/. Disponible en: 10.1093/cvr/cvx005.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca2+-activated K+ channels KCa2.3 and KCa3.1 via a Ca2+/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology-Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-H493; 0363-6135; Consultado en: 2021/05/09/23:17:04. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpheart.00642.2012. Disponible en: 10.1152/ajpheart.00642.2012.
Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. Consultado en: 2021/05/09/23:19:41. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2005.096818.
D’Arcangelo, Daniela; Scatozza, Francesca; Giampietri, Claudia; Marchetti, Paolo; Facchiano, Francesco; Facchiano, Antonio (2019) Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. En: Cancers. Vol. 11; No. 4; pp. 446 Consultado en: 2021/05/09/23:21:47. Disponible en: https://www.mdpi.com/2072-6694/11/4/446. Disponible en: 10.3390/cancers11040446.
Feranchak, Andrew P.; Doctor, R. Brian; Troetsch, Marlyn; Brookman, Kathryn; Johnson, Sylene M.; Fitz, J. Gregory (2004) Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. En: Gastroenterology. Vol. 127; No. 3; pp. 903-913; 0016-5085; Disponible en: 10.1053/j.gastro.2004.06.047.
Chantome, Aurelie; Girault, Alban; Potier, Marie; Collin, Christine; Vaudin, Pascal; Pagès, Jean-Christophe; Vandier, Christophe; Joulin, Virginie (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. En: Experimental Cell Research. Vol. 315; No. 20; pp. 3620-3630; 1090-2422; Disponible en: 10.1016/j.yexcr.2009.07.021.
Liebau, Stefan; Vaida, Bianca; Proepper, Christian; Grissmer, Stephan; Storch, Alexander; Boeckers, Tobias M.; Dietl, Paul; Wittekindt, Oliver H. (2007) Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. En: Journal of Neurochemistry. Vol. 101; No. 5; pp. 1338-1350; 1471-4159; Consultado en: 2021/05/09/23:30:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2006.04437.x. Disponible en: https://doi.org/10.1111/j.1471-4159.2006.04437.x.
Potier, Marie; Tran, Truong An; Chantome, Aurelie; Girault, Alban; Joulin, Virginie; Bougnoux, Philippe; Vandier, Christophe; Pierre, Fabrice (2010) Altered SK3/KCa2.3-mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells. En: Biochemical and Biophysical Research Communications. Vol. 397; No. 1; pp. 42-47; 1090-2104; Disponible en: 10.1016/j.bbrc.2010.05.046.
Koegel, Heidi; Kaesler, Susanne; Burgstahler, Ralf; Werner, Sabine; Alzheimer, Christian (2003) Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. En: The Journal of Biological Chemistry. Vol. 278; No. 5; pp. 3323-3330; 0021-9258; Disponible en: 10.1074/jbc.M208914200.
Kaushal, Vikas; Koeberle, Paulo D.; Wang, Yimin; Schlichter, Lyanne C. (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. En: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. Vol. 27; No. 1; pp. 234-244; 1529-2401; Disponible en: 10.1523/JNEUROSCI.3593-06.2007.
Lauf, Peter K.; Misri, Sandeep; Chimote, Ameet A.; Adragna, Norma C. (2008) Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 3; pp. C820-C832; 0363-6143; Consultado en: 2021/05/09/23:45:14. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00375.2007. Disponible en: 10.1152/ajpcell.00375.2007.
Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Consultado en: 2021/05/09/23:45:45. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/22992678/.
K ca 3.1 Activation Via P2y 2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. Consultado en: 2021/05/09/23:46:41. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/28659615/.
Robles-Martínez, L.; Garay, E.; Martel-Gallegos, M. G.; Cisneros-Mejorado, A.; Pérez-Montiel, D.; Lara, A.; Arellano, R. O. (2017) Kca3.1 Activation Via P2y2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. En: Scientific Reports. Vol. 7; No. 1; pp. 4340 2045-2322; Disponible en: 10.1038/s41598-017-04292-6.
Sciaccaluga, Miriam; Fioretti, Bernard; Catacuzzeno, Luigi; Pagani, Francesca; Bertollini, Cristina; Rosito, Maria; Catalano, Myriam; D'Alessandro, Giuseppina; Santoro, Antonio; Cantore, Giampaolo; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio; Limatola, Cristina (2010) CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity. En: American Journal of Physiology-Cell Physiology. Vol. 299; No. 1; pp. C175-C184; 0363-6143; Consultado en: 2021/05/09/23:52:49. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00344.2009. Disponible en: 10.1152/ajpcell.00344.2009.
Romanenko, Victor G; Nakamoto, Tetsuji; Srivastava, Alaka; Begenisich, Ted; Melvin, James E (2007) Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. En: The Journal of Physiology. Vol. 581; No. Pt 2; pp. 801-817; 0022-3751; Consultado en: 2021/05/09/23:53:45. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075181/. Disponible en: 10.1113/jphysiol.2006.127498.
Steudel, Friederike A.; Mohr, Corinna J.; Stegen, Benjamin; Nguyen, Hoang Y.; Barnert, Andrea; Steinle, Marc; Beer-Hammer, Sandra; Koch, Pierre; Lo, Wing-Yee; Schroth, Werner; Hoppe, Reiner; Brauch, Hiltrud; Ruth, Peter; Huber, Stephan M.; Lukowski, Robert (2017) SK4 channels modulate Ca2+ signalling and cell cycle progression in murine breast cancer. En: Molecular Oncology. Vol. 11; No. 9; pp. 1172-1188; 1878-0261; Disponible en: 10.1002/1878-0261.12087.
Trinh, Nguyen Thu Ngan; Privé, Anik; Maillé, Emilie; Noël, Josette; Brochiero, Emmanuelle (2008) EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair. En: American Journal of Physiology. Lung Cellular and Molecular Physiology. Vol. 295; No. 5; pp. L866-880; 1040-0605; Disponible en: 10.1152/ajplung.90224.2008.
Vigneault, Patrick; Naud, Patrice; Qi, Xiaoyan; Xiao, Jiening; Villeneuve, Louis; Davis, Darryl R.; Nattel, Stanley (2018) Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. En: The Journal of Physiology. Vol. 596; No. 12; pp. 2359-2379; 1469-7793; Disponible en: 10.1113/JP275388.
McFerrin, Michael B.; Turner, Kathryn L.; Cuddapah, Vishnu Anand; Sontheimer, Harald (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 10; pp. C1070-1078; 1522-1563; Disponible en: 10.1152/ajpcell.00040.2012.
Tejada, Maria A.; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A. (2017) Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes. En: PloS One. Vol. 12; No. 2; pp. e0169914 1932-6203; Disponible en: 10.1371/journal.pone.0169914.
Tajima, Nobuyoshi; Schönherr, Kristina; Niedling, Susanna; Kaatz, Martin; Kanno, Hiroshi; Schönherr, Roland; Heinemann, Stefan H (2006) Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. En: The Journal of Physiology. Vol. 571; No. Pt 2; pp. 349-359; 0022-3751; Consultado en: 2021/05/10/00:11:07. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796787/. Disponible en: 10.1113/jphysiol.2005.096818.
Wang, Jun; Morishima, Shigeru; Okada, Yasunobu (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 284; No. 1; pp. C77-C84; 0363-6143; Consultado en: 2021/05/10/01:37:22. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00132.2002. Disponible en: 10.1152/ajpcell.00132.2002.
Millership, Joanne E.; Devor, Daniel C.; Hamilton, Kirk L.; Balut, Corina M.; Bruce, Jason I. E.; Fearon, Ian M. (2010) Calcium-activated K+ channels increase cell proliferation independent of K+ conductance. En: American Journal of Physiology-Cell Physiology. Vol. 300; No. 4; pp. C792-C802; 0363-6143; Consultado en: 2021/05/10/01:48:02. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00274.2010. Disponible en: 10.1152/ajpcell.00274.2010.
Sundelacruz, Sarah; Levin, Michael; Kaplan, David L. (2009) Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. En: Stem Cell Reviews and Reports. Vol. 5; No. 3; pp. 231-246; 1558-6804; Consultado en: 2021/05/10/02:00:14. Disponible en: https://doi.org/10.1007/s12015-009-9080-2. Disponible en: 10.1007/s12015-009-9080-2.
Barrett, K. E.; Keely, S. J. (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. En: Annual Review of Physiology. Vol. 62; pp. 535-572; 0066-4278; Disponible en: 10.1146/annurev.physiol.62.1.535.
Bernard, K.; Bogliolo, S.; Soriani, O.; Ehrenfeld, J. (2003) Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. En: The Journal of Membrane Biology. Vol. 196; No. 1; pp. 15-31; 0022-2631; Disponible en: 10.1007/s00232-003-0621-3.
Reid, Brian; Zhao, Min (2014) The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. En: Advances in Wound Care. Vol. 3; No. 2; pp. 184-201; 2162-1918; Disponible en: 10.1089/wound.2013.0442.
Justet, Cristian; Chifflet, Silvia; Hernandez, Julio A. (2019) Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture. En: BioMed Research International. Vol. 2019; pp. e8647121 2314-6133; Consultado en: 2021/05/10/09:50:27. Disponible en: https://www.hindawi.com/journals/bmri/2019/8647121/. Disponible en: 10.1155/2019/8647121.
Watsky, M. A. (1995) Nonselective cation channel activation during wound healing in the corneal endothelium. En: The American Journal of Physiology. Vol. 268; No. 5 Pt 1; pp. C1179-1185; 0002-9513; Disponible en: 10.1152/ajpcell.1995.268.5.C1179.
Vieira, Ana Carolina; Reid, Brian; Cao, Lin; Mannis, Mark J.; Schwab, Ivan R.; Zhao, Min (2011) Ionic Components of Electric Current at Rat Corneal Wounds. En: PLOS ONE. Vol. 6; No. 2; pp. e17411 1932-6203; Consultado en: 2021/05/10/09:59:58. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017411. Disponible en: 10.1371/journal.pone.0017411.
Yu, Zhihua; Dou, Fangfang; Wang, Yanxia; Hou, Lina; Chen, Hongzhuan (2018) Ca2+-dependent endoplasmic reticulum stress correlation with astrogliosis involves upregulation of KCa3.1 and inhibition of AKT/mTOR signaling. En: Journal of Neuroinflammation. Vol. 15; No. 1; pp. 316 1742-2094; Disponible en: 10.1186/s12974-018-1351-x.
Zundler, Sebastian; Caioni, Massimiliano; Müller, Martina; Strauch, Ulrike; Kunst, Claudia; Woelfel, Gisela (2016) K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner. En: PLOS ONE. Vol. 11; No. 1; pp. e0147736 1932-6203; Consultado en: 2021/05/10/12:56:32. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147736. Disponible en: 10.1371/journal.pone.0147736.
Bhattacharjee, Arin; Joiner, William J.; Wu, Meilin; Yang, Youshan; Sigworth, Fred J.; Kaczmarek, Leonard K. (2003) Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP. En: Journal of Neuroscience. Vol. 23; No. 37; pp. 11681-11691; 0270-6474, 1529-2401; Consultado en: 2021/05/10/14:23:53. Disponible en: https://www.jneurosci.org/content/23/37/11681. Disponible en: 10.1523/JNEUROSCI.23-37-11681.2003.
Bhattacharjee, Arin; von Hehn, Christian A. A.; Mei, Xiaofeng; Kaczmarek, Leonard K. (2005) Localization of the Na+-activated K+ channel Slick in the rat central nervous system. En: The Journal of Comparative Neurology. Vol. 484; No. 1; pp. 80-92; 0021-9967; Disponible en: 10.1002/cne.20462.
Tejada, Maria A.; Stople, Kathleen; Bomholtz, Sofia Hammami; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A. (2014) Cell Volume Changes Regulate Slick (Slo2.1), but Not Slack (Slo2.2) K+ Channels. En: PLOS ONE. Vol. 9; No. 10; pp. e110833 1932-6203; Consultado en: 2021/05/10/14:31:38. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110833. Disponible en: 10.1371/journal.pone.0110833.
Tomasello, Danielle L.; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin (2017) Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. En: Journal of Experimental Neuroscience. Vol. 11; pp. 1179069517726996 1179-0695; Disponible en: 10.1177/1179069517726996.
Smith, Charles O.; Wang, Yves T.; Nadtochiy, Sergiy M.; Miller, James H.; Jonas, Elizabeth A.; Dirksen, Robert T.; Nehrke, Keith; Brookes, Paul S. (2018) Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. pp. fj201800139R 1530-6860; Disponible en: 10.1096/fj.201800139R.
KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury. Consultado en: 2021/05/10/19:11:05. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103402.
Gribkoff, Valentin K.; Starrett, John E.; Dworetzky, Steven I. (2001) Maxi-K Potassium Channels: Form, Function, and Modulation of a Class of Endogenous Regulators of Intracellular Calcium. En: The Neuroscientist. Vol. 7; No. 2; pp. 166-177; 1073-8584; Consultado en: 2021/05/10/19:38:33. Disponible en: https://doi.org/10.1177/107385840100700211. Disponible en: 10.1177/107385840100700211.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2021/05/10/19:50:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Amano, Shiro; Kaji, Yuichi; Mimura, Tatsuya (2010) Biology of corneal endothelial cells in vivo and in vitro. En: Japanese Journal of Ophthalmology. Vol. 54; No. 3; pp. 211-214; 1613-2246; Disponible en: 10.1007/s10384-010-0799-8.
Dawczynski, Jens; Franke, Sibylle; Blum, Marcus; Kasper, Michael; Stein, Günter; Strobel, Jürgen (2002) Advanced glycation end-products in corneas of patients with keratoconus. En: Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. Vol. 240; No. 4; pp. 296-301; 0721-832X; Disponible en: 10.1007/s00417-002-0445-3.
Kase, Satoru; Ishida, Susumu; Rao, Narsing Adupa (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 1; No. 3; pp. 57-62; Consultado en: 2021/05/10/22:24:16. Disponible en: http://www.scirp.org/Journal/Paperabs.aspx?paperid=7107. Disponible en: 10.4236/jdm.2011.13009.
Satoru, Kase; Susumu, Ishida; Narsing Adupa, Rao (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 2011; 2160-5858; Consultado en: 2021/05/10/22:25:41. Disponible en: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=7107. Disponible en: 10.4236/jdm.2011.13009.
Price, Marianne O.; Thompson, Robert W.; Price, Francis W. (2003) Risk factors for various causes of failure in initial corneal grafts. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 121; No. 8; pp. 1087-1092; 0003-9950; Disponible en: 10.1001/archopht.121.8.1087.
Yu, Alice L.; Kaiser, Michaela; Schaumberger, Markus; Messmer, Elisabeth; Kook, Daniel; Welge-Lussen, Ulrich (2014) Donor-related risk factors and preoperative recipient-related risk factors for graft failure. En: Cornea. Vol. 33; No. 11; pp. 1149-1156; 1536-4798; Disponible en: 10.1097/ICO.0000000000000225.
Price, Marianne O.; Lisek, Marek; Feng, Matthew T.; Price, Francis W. (2017) Effect of Donor and Recipient Diabetes Status on Descemet Membrane Endothelial Keratoplasty Adherence and Survival. En: Cornea. Vol. 36; No. 10; pp. 1184-1188; 1536-4798; Disponible en: 10.1097/ICO.0000000000001305.
Zhao, Han; He, Yan; Ren, Yue-Rong; Chen, Bai-Hua (2019) Corneal alteration and pathogenesis in diabetes mellitus. En: International Journal of Ophthalmology. Vol. 12; No. 12; pp. 1939-1950; 2222-3959; Consultado en: 2021/05/10/23:27:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901883/. Disponible en: 10.18240/ijo.2019.12.17.
ImageJ. Consultado en: 2021/05/11/09:28:05. Disponible en: https://imagej-nih-gov.ez.urosario.edu.co/ij/.
Ramteke, Pranay; Deb, Ankita; Shepal, Varsha; Bhat, Manoj Kumar (2019) Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. En: Cancers. Vol. 11; No. 9; 2072-6694; Consultado en: 2021/05/12/10:46:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770430/. Disponible en: 10.3390/cancers11091402.
Lopez, Rebecca; Arumugam, Arunkumar; Joseph, Riya; Monga, Kanika; Boopalan, Thiyagarajan; Agullo, Pamela; Gutierrez, Christina; Nandy, Sushmita; Subramani, Ramadevi; Rosa, Jose Manuel de la; Lakshmanaswamy, Rajkumar (2013) Hyperglycemia Enhances the Proliferation of Non-Tumorigenic and Malignant Mammary Epithelial Cells through Increased leptin/IGF1R Signaling and Activation of AKT/mTOR. En: PLOS ONE. Vol. 8; No. 11; pp. e79708 1932-6203; Consultado en: 2021/05/12/10:57:24. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079708. Disponible en: 10.1371/journal.pone.0079708.
Li, Wenjie; Zhang, Xuehui; Sang, Hui; Zhou, Ying; Shang, Chunyu; Wang, Yongqing; Zhu, Hong (2019) Effects of hyperglycemia on the progression of tumor diseases. En: Journal of Experimental & Clinical Cancer Research. Vol. 38; No. 1; pp. 327 1756-9966; Consultado en: 2021/05/12/11:32:00. Disponible en: https://doi.org/10.1186/s13046-019-1309-6. Disponible en: 10.1186/s13046-019-1309-6.
Wolf, Gunter (2000) Cell cycle regulation in diabetic nephropathy. En: Kidney International. Diabetic kidney disease research: Where do we stand at the turn of the century?; Vol. 58; pp. S59-S66; 0085-2538; Consultado en: 2021/05/12/15:22:50. Disponible en: https://www.sciencedirect.com/science/article/pii/S0085253815474241. Disponible en: 10.1046/j.1523-1755.2000.07710.x.
Jannière, Laurent; Canceill, Danielle; Suski, Catherine; Kanga, Sophie; Dalmais, Bérengère; Lestini, Roxane; Monnier, Anne-Françoise; Chapuis, Jérôme; Bolotin, Alexander; Titok, Marina; Chatelier, Emmanuelle Le; Ehrlich, S. Dusko (2007) Genetic Evidence for a Link Between Glycolysis and DNA Replication. En: PLOS ONE. Vol. 2; No. 5; pp. e447 1932-6203; Consultado en: 2021/05/12/16:25:47. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000447. Disponible en: 10.1371/journal.pone.0000447.
da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent (2015) Cell cycle progression is regulated by intertwined redox oscillators. En: Theoretical Biology and Medical Modelling. Vol. 12; No. 1; pp. 10 1742-4682; Consultado en: 2021/05/12/16:52:31. Disponible en: https://doi.org/10.1186/s12976-015-0005-2. Disponible en: 10.1186/s12976-015-0005-2.
Nagy, Tamás; Fisi, Viktória; Frank, Dorottya; Kátai, Emese; Nagy, Zsófia; Miseta, Attila (2019) Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification. En: Cells. Vol. 8; No. 9; pp. 999 Consultado en: 2021/05/12/18:28:54. Disponible en: https://www.mdpi.com/2073-4409/8/9/999. Disponible en: 10.3390/cells8090999.
Yoon, Chang Ki; Yoon, Sam Young; Hwang, Jin Sun; Shin, Young Joo (2020) O-GlcNAc Signaling Augmentation Protects Human Corneal Endothelial Cells from Oxidative Stress via AKT Pathway Activation. En: Current Eye Research. Vol. 45; No. 5; pp. 556-562; 0271-3683; Consultado en: 2021/05/12/20:38:11. Disponible en: https://doi.org/10.1080/02713683.2019.1686154. Disponible en: 10.1080/02713683.2019.1686154.
Kruse, Carla R.; Singh, Mansher; Sørensen, Jens A.; Eriksson, Elof; Nuutila, Kristo (2016) The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats. En: Journal of Surgical Research. Vol. 206; No. 2; pp. 418-426; 0022-4804, 1095-8673; Consultado en: 2021/05/12/21:43:59. Disponible en: https://www.journalofsurgicalresearch.com/article/S0022-4804(16)30332-8/abstract. Disponible en: 10.1016/j.jss.2016.08.060.
Slawson, Chad; Zachara, Natasha E.; Vosseller, Keith; Cheung, Win D.; Lane, M. Daniel; Hart, Gerald W. (2005) Perturbations in O-linked β-N-Acetylglucosamine Protein Modification Cause Severe Defects in Mitotic Progression and Cytokinesis*. En: Journal of Biological Chemistry. Vol. 280; No. 38; pp. 32944-32956; 0021-9258; Consultado en: 2021/05/12/22:00:54. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820791544. Disponible en: 10.1074/jbc.M503396200.
Pahwa, Heena; Khan, Md Touseef; Sharan, Kunal (2020) Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. En: Molecular and Cellular Biochemistry. Vol. 469; No. 1-2; pp. 109-118; 1573-4919; Disponible en: 10.1007/s11010-020-03732-8.
Hsu, Chih-Chin; Chen, Carl Pai-Chu; Tsai, Wen-Chung; Yu, Shin-Ying; Wang, Jong-Shyan (2011) Measurement of Keratinocyte Migration in Hyperglycemia Media with an Electric Wound-Healing Assay. En: The FASEB Journal. Vol. 25; No. S1; pp. 680.1-680.1; 1530-6860; Consultado en: 2021/05/12/22:47:33. Disponible en: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.25.1_supplement.680.1. Disponible en: https://doi.org/10.1096/fasebj.25.1_supplement.680.1.
Rikitake, Yoshiyuki; Liao, James K. (2005) Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. En: Circulation. Vol. 111; No. 24; pp. 3261-3268; 1524-4539; Disponible en: 10.1161/CIRCULATIONAHA.105.534024.
Akhtar, R. A.; Chaouchi, K. M. (2004) Effects of Hyperglycemia on Cell Migration and Proliferation, and Phospholipase C1 in Rabbit Corneal Epithelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 13; pp. 3799-3799; 1552-5783; Consultado en: 2021/05/12/23:09:39. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2409333.
Okumura, Naoki; Ueno, Morio; Koizumi, Noriko; Sakamoto, Yuji; Hirata, Kana; Hamuro, Junji; Kinoshita, Shigeru (2009) Enhancement on Primate Corneal Endothelial Cell Survival In Vitro by a ROCK Inhibitor. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 8; pp. 3680-3687; 1552-5783; Consultado en: 2021/05/12/23:46:58. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2185592. Disponible en: 10.1167/iovs.08-2634.
Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Nakagawa, Hiroko; Hamuro, Junji; Kinoshita, Shigeru (2013) Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. En: Cornea. Vol. 32; No. 8; pp. 1167-1170; 1536-4798; Disponible en: 10.1097/ICO.0b013e318285475d.
Wang, H. Z.; Wu, K. Y.; Lin, C. P.; Fong, J. C.; Hong, S. J. (1997) Alteration of glucose uptake in cultured human corneal endothelial cells grown in high glucose media via cAMP-dependent pathway. En: The Kaohsiung Journal of Medical Sciences. Vol. 13; No. 9; pp. 566-571; 1607-551X
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2020) The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. En: Frontiers in Endocrinology. Vol. 11; 1664-2392; Consultado en: 2021/05/13/21:59:11. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2020.00024/full. Disponible en: 10.3389/fendo.2020.00024.
Takahashi, Hiroshi; Ohara, Kunitoshi; Ohmura, Takeo; Takahashi, Ryoki; Zieske, James D (2000) Glucose Transporter 1 Expression in Corneal Wound Repair under High Serum Glucose Level. En: Japanese Journal of Ophthalmology. Vol. 44; No. 5; pp. 470-474; 0021-5155; Consultado en: 2021/05/13/23:47:23. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021515500002227. Disponible en: 10.1016/S0021-5155(00)00222-7.
STRING: functional protein association networks. Consultado en: 2021/05/14/00:07:07. Disponible en: https://string-db.org/.
Philipp, Wolfgang; Speicher, Lilly; Humpel, Christian (2000) Expression of Vascular Endothelial Growth Factor and Its Receptors in Inflamed and Vascularized Human Corneas. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 9; pp. 2514-2522; 1552-5783; Consultado en: 2021/05/14/11:21:28. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2162302.
Deardorff, Phillip M.; McKay, Tina B.; Wang, Siran; Ghezzi, Chiara E.; Cairns, Dana M.; Abbott, Rosalyn D.; Funderburgh, James L.; Kenyon, Kenneth R.; Kaplan, David L. (2018) Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. En: Scientific Reports. Vol. 8; No. 1; pp. 17294 2045-2322; Consultado en: 2021/05/15/01:12:05. Disponible en: https://www.nature.com/articles/s41598-018-35917-z. Disponible en: 10.1038/s41598-018-35917-z.
Kovatchev, Boris P.; Otto, Erik; Cox, Daniel; Gonder-Frederick, Linda; Clarke, William (2006) Evaluation of a New Measure of Blood Glucose Variability in Diabetes. En: Diabetes Care. Vol. 29; No. 11; pp. 2433-2438; 0149-5992, 1935-5548; Consultado en: 2021/05/15/01:22:08. Disponible en: https://care.diabetesjournals.org/content/29/11/2433. Disponible en: 10.2337/dc06-1085.
Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa (2016) Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection. En: Journal of Natural Science, Biology, and Medicine. Vol. 7; No. 1; pp. 47-53; 0976-9668; Disponible en: 10.4103/0976-9668.175068.
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X; Consultado en: 2021/05/15/09:26:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698273/. Disponible en: 10.1007/s12199-007-0019-4.
Fanger, Christopher M.; Ghanshani, Sanjiv; Logsdon, Naomi J.; Rauer, Heiko; Kalman, Katalin; Zhou, Jianming; Beckingham, Kathy; Chandy, K. George; Cahalan, Michael D.; Aiyar, Jayashree (1999) Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1 *. En: Journal of Biological Chemistry. Vol. 274; No. 9; pp. 5746-5754; 0021-9258; Consultado en: 2021/05/15/11:32:45. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925819877189. Disponible en: 10.1074/jbc.274.9.5746.
Wulff, Heike; Castle, Neil A. (2010) Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. En: Expert Review of Clinical Pharmacology. Vol. 3; No. 3; pp. 385-396; 1751-2433; Consultado en: 2021/05/15/11:37:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347644/. Disponible en: 10.1586/ecp.10.11.
Ghanshani, S.; Wulff, H.; Miller, M. J.; Rohm, H.; Neben, A.; Gutman, G. A.; Cahalan, M. D.; Chandy, K. G. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. En: The Journal of Biological Chemistry. Vol. 275; No. 47; pp. 37137-37149; 0021-9258; Disponible en: 10.1074/jbc.M003941200.
Grgic, Ivica; Eichler, Ines; Heinau, Philipp; Si, Han; Brakemeier, Susanne; Hoyer, Joachim; Köhler, Ralf (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. En: Arteriosclerosis, Thrombosis, and Vascular Biology. Vol. 25; No. 4; pp. 704-709; 1524-4636; Disponible en: 10.1161/01.ATV.0000156399.12787.5c.
Schilling, Tom; Stock, Christian; Schwab, Albrecht; Eder, Claudia (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. En: The European Journal of Neuroscience. Vol. 19; No. 6; pp. 1469-1474; 0953-816X; Disponible en: 10.1111/j.1460-9568.2004.03265.x.
Lang, Philipp A.; Kaiser, Stefanie; Myssina, Swetlana; Wieder, Thomas; Lang, Florian; Huber, Stephan M. (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. En: American Journal of Physiology. Cell Physiology. Vol. 285; No. 6; pp. C1553-1560; 0363-6143; Disponible en: 10.1152/ajpcell.00186.2003.
Elliott, James I.; Higgins, Christopher F. (2003) IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. En: EMBO Reports. Vol. 4; No. 2; pp. 189-194; 1469-221X; Consultado en: 2021/05/15/12:00:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315824/. Disponible en: 10.1038/sj.embor.embor722.
Begenisich, Ted; Nakamoto, Tesuji; Ovitt, Catherine E.; Nehrke, Keith; Brugnara, Carlo; Alper, Seth L.; Melvin, James E. (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. En: The Journal of Biological Chemistry. Vol. 279; No. 46; pp. 47681-47687; 0021-9258; Disponible en: 10.1074/jbc.M409627200.
Wulff, Heike; Miller, Mark J.; Hänsel, Wolfram; Grissmer, Stephan; Cahalan, Michael D.; Chandy, K. George (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: A potential immunosuppressant. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 97; No. 14; pp. 8151-8156; 0027-8424; Consultado en: 2021/05/15/12:32:36. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16685/.
Brugnara, C; Gee, B; Armsby, C C; Kurth, S; Sakamoto, M; Rifai, N; Alper, S L; Platt, O S (1996) Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. En: Journal of Clinical Investigation. Vol. 97; No. 5; pp. 1227-1234; 0021-9738; Consultado en: 2021/05/15/12:52:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507175/.
K+ channels as targets for specific immunomodulation. Consultado en: 2021/05/15/12:53:21. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC2749963/.
Maezawa, Izumi; Jenkins, David Paul; Jin, Benjamin E.; Wulff, Heike (2012) Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease. En: International Journal of Alzheimer’s Disease. Vol. 2012; pp. e868972 2090-8024; Consultado en: 2021/05/15/20:24:08. Disponible en: https://www.hindawi.com/journals/ijad/2012/868972/. Disponible en: 10.1155/2012/868972.
Huang, Chunling; Yi, Hao; Shi, Ying; Cao, Qinghua; Shi, Yin; Cheng, Delfine; Braet, Filip; Chen, Xin-Ming; Pollock, Carol A. (2021) KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. En: Frontiers in Cell and Developmental Biology. Vol. 9; pp. 573814 2296-634X; Disponible en: 10.3389/fcell.2021.573814.
Zhu, Yan-Rong; Jiang, Xiao-Xin; Zhang, Dai-Min (2019) Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. En: Journal of Molecular Medicine. Vol. 97; No. 9; pp. 1219-1229; 1432-1440; Consultado en: 2021/05/15/23:21:13. Disponible en: https://doi.org/10.1007/s00109-019-01814-9. Disponible en: 10.1007/s00109-019-01814-9.
Su, Xing-Li; Zhang, Hong; Yu, Wei; Wang, Shuang; Zhu, Wei-Jun (2013) Role of KCa3.1 channels in proliferation and migration of vascular smooth muscle cells by diabetic rat serum. En: The Chinese Journal of Physiology. Vol. 56; No. 3; pp. 155-162; 0304-4920; Disponible en: 10.4077/CJP.2013.BAB104.
Lin, Mike T.; Adelman, John P.; Maylie, James (2012) Modulation of endothelial SK3 channel activity by Ca2+-dependent caveolar trafficking. En: American Journal of Physiology-Cell Physiology. Vol. 303; No. 3; pp. C318-C327; 0363-6143; Consultado en: 2021/05/16/01:56:16. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00058.2012. Disponible en: 10.1152/ajpcell.00058.2012.
Roy, J. W.; Cowley, E. A.; Blay, J.; Linsdell, P. (2010) The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors. En: British Journal of Pharmacology. Vol. 159; No. 3; pp. 650-658; 1476-5381; Disponible en: 10.1111/j.1476-5381.2009.00557.x.
1-EBIO | #E-150 | CAS 10045-45-1. En: Alomone Labs. Consultado en: 2021/05/16/16:54:34. Disponible en: https://www.alomone.com/p/1-ebio/E-150.
Chadha, Preet S.; Liu, Lu; Rikard-Bell, Matt; Senadheera, Sevvandi; Howitt, Lauren; Bertrand, Rebecca L.; Grayson, T. Hilton; Murphy, Timothy V.; Sandow, Shaun L. (2011) Endothelium-Dependent Vasodilation in Human Mesenteric Artery Is Primarily Mediated by Myoendothelial Gap Junctions Intermediate Conductance Calcium-Activated K+ Channel and Nitric Oxide. En: Journal of Pharmacology and Experimental Therapeutics. Vol. 336; No. 3; pp. 701-708; 0022-3565, 1521-0103; Consultado en: 2021/05/16/21:16:58. Disponible en: https://jpet.aspetjournals.org/content/336/3/701. Disponible en: 10.1124/jpet.110.165795.
Maldonado, Oscar; Jenkins, Alexandra; Belalcazar, Helen M.; Hernandez-Cuervo, Helena; Hyman, Katelynn M.; Ladaga, Giannina; Padilla, Lucia; Erausquin, Gabriel A. de (2020) Age-dependent neuroprotective effect of an SK3 channel agonist on excitotoxity to dopaminergic neurons in organotypic culture. En: PLOS ONE. Vol. 15; No. 7; pp. e0223633 1932-6203; Consultado en: 2021/05/16/21:22:09. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223633. Disponible en: 10.1371/journal.pone.0223633.
Spergel, Daniel J. (2007) Calcium and Small-Conductance Calcium-Activated Potassium Channels in Gonadotropin-Releasing Hormone Neurons before, during, and after Puberty. En: Endocrinology. Vol. 148; No. 5; pp. 2383-2390; 0013-7227; Consultado en: 2021/05/16/21:31:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315592/. Disponible en: 10.1210/en.2006-1693.
Kanawa, Surbhi; Jain, Kalpna; Sagar, Vinod; Yadav, Dinesh K. (2021) Evaluation of changes in corneal endothelium in chronic kidney disease. En: Indian Journal of Ophthalmology. Vol. 69; No. 5; pp. 1080-1083; 0301-4738; Consultado en: 2021/05/17/01:56:10. Disponible en: https://journals.lww.com/ijo/Fulltext/2021/05000/Evaluation_of_changes_in_corneal_endothelium_in.14.aspx. Disponible en: 10.4103/ijo.IJO_1764_20.
Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto (2013) The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*. En: Journal of Biological Chemistry. Vol. 288; No. 22; pp. 15843-15853; 0021-9258; Consultado en: 2021/05/18/06:49:21. Disponible en: https://www.sciencedirect.com/science/article/pii/S002192582045971X. Disponible en: 10.1074/jbc.M112.427187.
Manaves, Vlasios; Qin, Wuxuan; Bauer, Amy L.; Rossie, Sandra; Kobayashi, Masakazu; Rane, Stanley G. (2004) Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed. En: BMC Dermatology. Vol. 4; No. 1; pp. 7 1471-5945; Consultado en: 2021/05/18/07:02:24. Disponible en: https://doi.org/10.1186/1471-5945-4-7. Disponible en: 10.1186/1471-5945-4-7.
De Marchi, Umberto; Sassi, Nicola; Fioretti, Bernard; Catacuzzeno, Luigi; Cereghetti, Grazia M.; Szabò, Ildikò; Zoratti, Mario (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. En: Cell Calcium. Vol. 45; No. 5; pp. 509-516; 1532-1991; Disponible en: 10.1016/j.ceca.2009.03.014.
Lee, Elbert L.; Hasegawa, Yuichi; Shimizu, Takahiro; Okada, Yasunobu (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 6; pp. C1398-C1406; 0363-6143; Consultado en: 2021/05/18/08:01:47. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00428.2007. Disponible en: 10.1152/ajpcell.00428.2007.
Gospodarowicz, Denis; Mescher, Anthony L.; Birdwell, Charles R. (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. En: Experimental Eye Research. Vol. 25; No. 1; pp. 75-89; 0014-4835; Consultado en: 2021/05/18/22:54:42. Disponible en: https://www.sciencedirect.com/science/article/pii/0014483577902482. Disponible en: 10.1016/0014-4835(77)90248-2.
Zhao, Li-Mei; Zhang, Wei; Wang, Li-Ping; Li, Gui-Rong; Deng, Xiu-Ling (2012) Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. En: Pflügers Archiv. Vol. 464; No. 6; pp. 613-621; 1432-2013; Consultado en: 2021/05/18/23:20:56. Disponible en: https://doi.org/10.1007/s00424-012-1165-0. Disponible en: 10.1007/s00424-012-1165-0.
Catacuzzeno, Luigi; Aiello, Francesco; Fioretti, Bernard; Sforna, Luigi; Castigli, Emilia; Ruggieri, Paola; Tata, Ada Maria; Calogero, Antonella; Franciolini, Fabio (2011) Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1926-1933; 1097-4652; Disponible en: 10.1002/jcp.22523.
Cuddapah, Vishnu Anand; Habela, Christa W.; Watkins, Stacey; Moore, Lindsay S.; Barclay, Tia-Tabitha C.; Sontheimer, Harald (2012) Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. En: American Journal of Physiology. Cell Physiology. Vol. 302; No. 3; pp. C527-538; 1522-1563; Disponible en: 10.1152/ajpcell.00248.2011.
Catacuzzeno, Luigi; Franciolini, Fabio (2018) Role of KCa3.1 Channels in Modulating Ca2+ Oscillations during Glioblastoma Cell Migration and Invasion. En: International Journal of Molecular Sciences. Vol. 19; No. 10; pp. 2970 Consultado en: 2021/05/19/01:05:35. Disponible en: https://www.mdpi.com/1422-0067/19/10/2970. Disponible en: 10.3390/ijms19102970.
Gao, Ya-dong; Hanley, Peter J.; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen (2010) Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. En: Cell Calcium. Vol. 48; No. 1; pp. 19-27; 1532-1991; Disponible en: 10.1016/j.ceca.2010.06.002.
Fioretti, Bernard; Catacuzzeno, Luigi; Sforna, Luigi; Aiello, Francesco; Pagani, Francesca; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio (2009) Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. En: American Journal of Physiology. Cell Physiology. Vol. 297; No. 1; pp. C102-110; 1522-1563; Disponible en: 10.1152/ajpcell.00354.2008.
Jakakul, Chanon; Kanjanasirirat, Phongthon; Muanprasat, Chatchai (2021) Development of a Cell-Based Assay for Identifying KCa3.1 Inhibitors Using Intestinal Epithelial Cell Lines. En: SLAS DISCOVERY: Advancing the Science of Drug Discovery. Vol. 26; No. 3; pp. 439-449; 2472-5552; Consultado en: 2021/05/19/01:51:41. Disponible en: https://doi.org/10.1177/2472555220950661. Disponible en: 10.1177/2472555220950661.
Liu, Yu; Zhao, Liang; Ma, Wenya; Cao, Xuefeng; Chen, Hongyang; Feng, Dan; Liang, Jing; Yin, Kun; Jiang, Xiaofeng (2015) The Blockage of KCa3.1 Channel Inhibited Proliferation, Migration and Promoted Apoptosis of Human Hepatocellular Carcinoma Cells. En: Journal of Cancer. Vol. 6; No. 7; pp. 643-651; 1837-9664; Consultado en: 2021/05/19/01:59:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466414/. Disponible en: 10.7150/jca.11913.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:30:31. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:48:32. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Aketa, Naohiko; Uchino, Miki; Kawashima, Motoko; Uchino, Yuichi; Yuki, Kenya; Ozawa, Yoko; Sasaki, Mariko; Yamagishi, Kazumasa; Sawada, Norie; Tsugane, Shoichiro; Tsubota, Kazuo; Iso, Hiroyasu (2021) Myopia, corneal endothelial cell density and morphology in a Japanese population-based cross-sectional study: the JPHC-NEXT Eye Study. En: Scientific Reports. Vol. 11; No. 1; pp. 6366 2045-2322; Consultado en: 2021/05/19/23:15:15. Disponible en: https://www.nature.com/articles/s41598-021-85617-4. Disponible en: 10.1038/s41598-021-85617-4.
Cárdenas Díaz, Taimi; Corcho Arévalo, Yeni; Torres Ortega, Rosario; Capote Cabrera, Armando; Hernández López, Iván; Cruz Izquierdo, Dunia (2013) Caracterización del endotelio corneal en pacientes con indicación de cirugía de catarata. En: Revista Cubana de Oftalmología. Vol. 26; No. 1; pp. 39-47; 0864-2176; Consultado en: 2021/05/19/23:15:47. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-21762013000100005&lng=es&nrm=iso&tlng=es.
Liu, Cailing; Miyajima, Taiga; Melangath, Geetha; Miyai, Takashi; Vasanth, Shivakumar; Deshpande, Neha; Kumar, Varun; Ong Tone, Stephan; Gupta, Reena; Zhu, Shan; Vojnovic, Dijana; Chen, Yuming; Rogan, Eleanor G.; Mondal, Bodhiswatta; Zahid, Muhammad; Jurkunas, Ula V. (2020) Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 117; No. 1; pp. 573-583; 0027-8424; Consultado en: 2021/05/19/23:16:20. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955350/. Disponible en: 10.1073/pnas.1912546116.
R: The R Project for Statistical Computing. Consultado en: 2021/06/02/17:05:44. Disponible en: https://www.r-project.org/.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2021/06/02/19:50:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Anbar, Mohamed; Mohamed Mostafa, Engy; Elhawary, Ashraf Mostafa; Awny, Islam; Farouk, Mahmoud Mohamed; Mounir, Amr (2019) Evaluation of Corneal Higher-Order Aberrations by Scheimpflug–Placido Topography in Patients with Different Refractive Errors: A Retrospective Observational Study. En: Journal of Ophthalmology. Vol. 2019; 2090-004X; Consultado en: 2021/06/02/21:52:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589193/. Disponible en: 10.1155/2019/5640356.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
ISSN: 2314-6133
1935-5548
1750-2799
0271-3683
1460-2202
0014-4835
1350-9462
1177-5467
1536-4798
0042-6989
1537-6605
0363-6143
1530-6860
1525-2191
1552-5783
1533-4406
0146-0404
1120-6721
0003-9950
0009-2797
0364-3190
0005-2736
2352-3964
1422-0067
0950-222X
0365-6691
1538-3601
0733-8902
1699-5848
1873-1635
1746-9899
1096-0007
0012-1606
0214-6282
1696-3547
1662-5102
0022-2631
1056-8719
1474-1784
2075-8251
1090-0535
0002-9513
1538-9235
1522-1563
0031-9333
1083-351X
1395-3907
0030-3755
1423-0267
0021-8782
1542-0086
1097-4652
1137-6627
1874-3641
0022-1295
1460-2083
0036-8075
1095-9203
1877-1173
0721-832X
1435-702X
0007-1188
1755-375X
1943-0264
0030-3747
1423-0259
1465-4644
0021-9541
0066-4154
0167-4889
0006-3002
1080-7683
1342-078X
1347-4715
2218-273X
1399-543X
0143-5221
1470-8736
1875-5666
0007-1161
2576-2095
1522-1210
1937-335X
1530-0307
0006-3495
1540-8140
1044-1549
1468-2079
0012-1797
1097-2765
1476-5403
1542-2321
1942-0900
1942-0994
1532-4095
1540-7748
1522-1539
1664-042X
0021-9258
1837-9664
1079-5642
0165-6147
0031-6997
1521-0081
2228-6497
1464-5491
0149-5992
1476-5454
0031-6768
2515-8414
1469-7793
0027-8424
1091-6490
1939-327X
1330-0962
0277-3740
0039-6257
1879-3304
2314-6745
1475-1313
0021-972X
0098-2997
1179-2000
0002-9394
0003-0244
0165-5701
1573-2630
1542-0124
1539-2864
1056-8727
2045-2322
0886-3350
1319-4534
0161-6420
1549-4713
1759-2879
1548-7660
1875-5739
0270-6474
1432-2013
0305-1048
0024-3205
0165-0270
1420-682X
0306-4522
2092-6413
0008-6363
0363-6135
0016-5085
1090-2422
1471-4159
1090-2104
1529-2401
0022-3751
1878-0261
1040-0605
1558-6804
0066-4278
2162-1918
0021-9967
1073-8584
1613-2246
2160-5858
2222-3959
2072-6694
0085-2538
0022-4804
1095-8673
1573-4919
1524-4539
1607-551X
1664-2392
0021-5155
0976-9668
1751-2433
1524-4636
0953-816X
1469-221X
0021-9738
1432-1440
0304-4920
1476-5381
0022-3565
1521-0103
0013-7227
0301-4738
1532-1991
2472-5552
0165-2478
0864-2176
2090-004X
DOI: 10.48713/10336_32728
Popis: La córnea es el lente que protege la superficie anterior del ojo y su transparencia es clave para permitir la visión. Esta característica en gran medida está determinada por la actividad de las células de su capa más profunda, el endotelio corneal. Una monocapa de células hexagonales cuyas características morfo-fisiológicas le permiten no solo compensar la tendencia a la sobrehidratación natural que tienen capas más superficiales de la córnea, especialmente el estroma, sino ser un punto clave para el ingreso y la distribución de nutrientes a nivel corneal. Dado que tras el nacimiento el potencial proliferativo de las células endoteliales de la córnea humana es extremadamente limitado, la densidad celular se reduce progresivamente durante la vida, y para restaurar el tejido, las células adyacentes deben migrar y cubrir el área que se ha dañado. Las patologías que afecten, directa o indirectamente, al endotelio corneal aceleran la perdida celular y generan una disfunción que, en última instancia, conlleva a la pérdida de la transparencia corneal haciendo casi imposible la visión, y en la actualidad el único tratamiento disponible es el trasplante. En las últimas décadas, la diabetes mellitus (DM) se ha identificado como una de las enfermedades sistémicas que afectan el endotelio corneal. En estos pacientes se ha descrito un aumento de la paquimetría, una reducción del recuento de células endoteliales respecto a personas sanas de la misma edad y sexo, e incluso diferencias entre pacientes diabéticos de acuerdo con el tiempo de evolución de la enfermedad, además, tras procedimientos quirúrgicos, la alteración de la función de esta barrera ocular y el edema del estroma suelen ser persistentes. Sin embargo, los mecanismos fisiopatológicos por los que la DM afecta el endotelio de la córnea están pobremente descritos. La DM corresponde a un grupo de trastornos metabólicos cuya condición sine qua non es la hiperglicemia. Si bien no es la única causa de hiperglicemia en el ser humano, sí es la que se relaciona con un aumento persistente de la concentración de glucosa en la sangre y otros líquidos extracelulares. Esta situación lleva a complicaciones que afectan preferencialmente células que, como el endotelio corneal, internalizan la glucosa por medio de transportadores de glucosa tipo 1 (GLUT1), es decir por transportadores independientes de los niveles de insulina en sangre, así como ocurre en los eritrocitos, los astrocitos, las neuronas y las células renales, células con las que los tejidos oculares muestran cierta homología desde su origen embrionario (el endotelio deriva de la cresta neural), hasta la fisiopatología, puesto que clínicamente existe concordancia entre el compromiso renal y el ocular. La exposición persistente de las células de todos los tejidos a niveles elevados de glucosa induce lesiones que, en general, están relacionadas con un desbalance en el que la glucosa, y otros metabolitos, se convierten en sustrato de vías metabólicas que usualmente no los utilizan y favorecen el desarrollo de alteraciones morfológicas y funcionales, que una vez se desarrollan son prácticamente irreversibles. Sin embargo, aunque para los tejidos nervioso, cardiovascular y renal la lesión mediada por un microambiente diabético está bien caracterizada, no sucede lo mismo para la córnea y menos aún para el endotelio corneal. Los estudios en diversas poblaciones que han intentado evaluar el impacto de la enfermedad sobre el endotelio, aunque son consistentes en cuanto a los cambios morfológicos, reportan resultados discordantes en cuanto al recuento endotelial y la paquimetría. Por lo anterior, se consideró relevante evaluar el impacto de la diabetes sobre el endotelio mediante modelos estadísticos que permitieran discriminar los cambios asociados a la edad descritos para estas células; en particular, para este análisis era importante identificar el efecto de la enfermedad sobre la densidad celular del endotelio y su capacidad para mantener la deshidratación relativa del estroma y controlar el espesor corneal. Así que se construyó un modelo estadístico con base en una meta-regresión que incluía los tipos de diabetes y la edad como moduladores, para evaluar el impacto real de cada tipo de DM (DM tipo 1 y DM tipo 2) sobre la densidad del endotelio corneal y el espesor de la córnea, determinado por la paquimetría. Este análisis evidenció que el recuento celular se reducía significativamente por la enfermedad, predominantemente en pacientes con DM tipo 1 en quienes el compromiso era independiente de la duración de la enfermedad, y que el aumento del espesor corneal en los pacientes diabéticos era superior al esperado por edad para ambos grupos, independientemente del tipo de diabetes. Estos resultados, que evidenciaban clínicamente el impacto de la hiperglicemia sobre el endotelio, sustentaron la necesidad de evaluar in vitro el efecto que tienen las concentraciones elevadas de glucosa sobre estas células. Particularmente sobre su capacidad de proliferación, su capacidad de migrar para cubrir un defecto y en la inducción de apoptosis, principal tipo de muerte celular identificado hasta el momento en estas células, y el cual ha sido descrito dentro de las respuestas de las células endoteliales frente al estrés oxidativo condición clave dentro de la fisiopatología diabética. Para evaluar los cambios en la capacidad de proliferación de las células del endotelio, se utilizaron cultivos celulares de una línea inmortalizada, las cuales se expusieron al medio definido para ellas como basal y a medios con altas concentraciones de glucosa (55mM). y se hizo seguimiento de la tasa de cambio en la densidad celular mediante ensayos de reducción de MTT [bromuro de 3- (4, 5-dimetiltiazol-2-il) -2,5-difeniltetrazolio]. En estos experimentos, las células con metabolismo activo convierten el MTT en un producto de color púrpura que una vez solubilizado permite evaluar mediante colorimetría los cambios en la cantidad de células viables. Las pruebas realizadas permitieron evidenciar un aumento en la cantidad de células de los cultivos expuestos a altas concentraciones de glucosa (55mM), mostrando una diferencia significativa tras 24 horas; sin embargo, aunque la diferencia permanecía siendo significativa tras 48 horas, a partir de ese momento el recuento celular medido indirectamente por el método colorimétrico mostraba una reducción progresiva que igualaba la cantidad de células viables a los 5 días para las dos condiciones. La influencia de las distintas concentraciones de glucosa en la capacidad del endotelio para cerrar un defecto de continuidad en la monocapa, se realizó utilizando el método descrito por Liang y colaboradores en 2007 (Liang et al., 2007), en el que se crea un rasguño ("scratch") en una monocapa celular, y se hace seguimiento imagenológico mediante fotografías tomadas desde el momento en que se genera la lesión y a intervalos regulares, hasta que la “herida” cierra. Esto permite comparar el tiempo que le toma a las células del endotelio cerrar el espacio de la lesión bajo diferentes condiciones y cuantificar la tasa de migración de las células. En estos experimentos, se evidenció un retraso significativo de las células expuestas a elevadas concentraciones de glucosa para cerrar el defecto en comparación con células en medios basales. Mientras estas últimas tomaban aproximadamente 5-6 días para cerrar el defecto, para ese momento las células expuestas a niveles elevados de glucosa habían cerrado, en promedio, 50% de la distancia. Por último, la evaluación de apoptosis se realizó mediante un kit comercial (Cell Death Detection ELISA PLUS (Roche) ) que utiliza la técnica de ELISA (inmunoensayo enzimático) tipo sándwich con anticuerpos monoclonales para histonas con el fin de determinar mono y oligonucleosomas en la fracción citoplasmática de los lisados celulares de cada condición. Estos experimentos evidenciaron que la exposición a elevadas concentraciones de glucosa por 24 horas inducía apoptosis tres veces superior a la que se presentaba en las células en condiciones basales. En la fisiopatología de los procesos deletéreos asociados a la diabetes recientemente se ha identificado la importancia de los procesos electrofisiológicos. En células renales y de la microglía se ha demostrado que los canales de potasio activados por calcio de conductancia intermedia (KCa3.1) parecen tener un papel relevante. Sin embargo, la familia de canales de potasio activados por calcio (KCa) no había sido descrita previamente en el endotelio corneal por lo que fue necesario inicialmente identificar cuales canales de esta familia se expresaban en estas células. Se partió de un análisis bioinformático que permitiera la identificación in silico de estos canales tras lo cual, se comprobó in vitro mediante PCR y en algunos casos Western blot e inmunomarcación la presencia de los canales de potasio activado por calcio de baja conductancia KCa2.2 y KCa2.3, el de conductancia intermedia KCa3.1 y el canal de potasio activado por sodio KNa2.1 (Slick) en las células del endotelio corneal. En el trascurso del desarrollo del presente trabajo, Anumanthan y colaboradores (2018) publicaron un artículo que evaluaba la actividad de KCa3.1 en el estroma de la córnea que incluyó microfotografías que permitían ver marcado el endotelio, lo que reforzó los resultados obtenidos. Se procedió a estudiar que funciones cumplía KCa3.1 en el endotelio en condiciones basales y si estas se modificaban ante la exposición de las células a concentraciones elevadas de glucosa. Estos experimentos que incluyeron la estimulación e inhibición química del canal permitieron identificar la participación de canales KCa3.1 en los procesos de migración, proliferación y apoptosis. KCa3.1, el canal de conductancia intermedia de la familia de canales de potasio activados por calcio, puede ser activado por 1-1-Etil-1,3-dihidro-2H-benzimidazol-2-ona (benzimidazolona) (EBIO-1) y puede ser inhibido selectivamente por 1-[(2-Clorofenil) difenilmetil]-1H-pirazol (TRAM-34). Estos compuestos se utilizaron para probar el efecto de la estimulación e inhibición del canal en la proliferación, migración y apoptosis de las células del endotelio corneal expuesto tanto a condiciones basales como a condiciones hiperglúcidas. La estimulación del canal con EBIO-1 mostró un efecto inhibitorio significativo sobre la proliferación de las células del endotelio cuando se utiliza a concentraciones de 50, 100 y 200 µM, suficiente para contrarrestar el efecto proliferativo identificado en condiciones de alta glucosa durante los primeros días. La inhibición del canal con TRAM-34 a concentraciones de 2, 4 y 8 µM evidenció un efecto contrario, aumentó la proliferación de las células en condiciones basales, especialmente a las concentraciones más altas, y potenció el efecto proliferativo identificado en condiciones de alta glucosa, manteniendo una cantidad mayor de células viables por un tiempo más prolongado. En cuanto a la migración, la estimulación con EBIO-1 redujo la tasa de migración aproximadamente un 50% en condiciones basales y potenció el efecto visto en las condiciones hiperglúcidas. Por el contrario, la inhibición de KCa3.1 con TRAM-34 a 2 µM, aceleró la migración e incluso acercó la tasa de migración de las células en condiciones de alta glucosa a las de las células basales, los efectos son menores a concentraciones mayores. Finalmente, en condiciones basales ninguna de las concentraciones descritas para EBIO-1 y para TRAM-34 aumentaron la tasa de apoptosis; sin embargo, asociadas a medios con elevadas concentraciones de glucosa, EBIO-1 a concentraciones de 100 µM y TRAM_34 a 4 µM sí lo hicieron. En conclusión, este trabajo permitió identificar el compromiso de la diabetes mellitus sobre el endotelio corneal mediante la determinación de su rol en la reducción de la densidad de esta monocapa más allá de la esperada fisiológicamente por la edad, y su impacto en el aumento de la paquimetría, además de identificar un compromiso más severo de los pacientes con diabetes mellitus tipo 1 respecto a los que cursan con el tipo 2. Adicionalmente, se describió por primera vez la presencia de canales de potasio activados por calcio de conductancia baja, además de confirmar la expresión del canal de conductancia intermedia, y se identificaron en el endotelio corneal los canales de potasio activados por sodio de alta conductancia tipo 2. Por último, se exploró la participación de KCa 3.1 en la proliferación, migración y apoptosis de estas células y se describió su papel como moduladores de estos procesos tanto en condiciones basales como en condiciones de alta glucosa lo cual es relevante tanto en condiciones fisiológicas como en condiciones patológicas, no solo en el escenario de la diabetes sino probablemente en las respuestas ante otros eventos. The cornea is the lens that protects the anterior surface of the eye and its transparent nature is a crucial part of the functioning of the eye. This characteristic is mainly determined by the activity of the cells of its deepest layer, the corneal endothelium. This is a monolayer of hexagonal cells whose morpho-physiological characteristics allow it not only to compensate the natural hyperhydration of the superficial layers of the cornea, especially the stroma, but also mean it can be a key point for the entry and distribution of nutrients in the cornea. Since the proliferative potential of human corneal endothelial cells after birth is extremely limited, cell density progressively reduces during life, and to restore the tissue, adjacent cells must spread out and cover the area that has been damaged. Pathologies that directly or indirectly affect the corneal endothelium accelerate cell loss and generate dysfunction that ultimately leads to loss of corneal transparency, severely hampering vision, and the only treatment currently available is a transplant. In recent decades, diabetes mellitus (DM) has been identified as one of the systemic diseases that affect the corneal endothelium. In these patients, the literature has described increases in pachymetry, reductions in the endothelial cell count with respect to healthy people of the same age and sex, and even differences between diabetic patients depending on the time of disease progression. Furthermore, the alteration of the function of this ocular barrier and the stromal edema often persists even after surgical procedures. However, the pathophysiological mechanisms by which DM affects the corneal endothelium are poorly described. DM is one of a group of metabolic disorders whose sine qua non is hyperglycaemia. Although it is not the only cause of hyperglycaemia in humans, it is the one that is related to a persistent increase in glucose levels in the blood and other extracellular liquids. This leads to complications that disproportionally affect cells that, like the corneal endothelium, absorb glucose through glucose transporter 1 (GLUT1), that is to say through transporters that are independent of blood insulin levels, as occurs in erythrocytes, astrocytes, neurons and renal cells, cells which show certain similarity to eye tissue in terms not only of their embryonic origin (the endothelium derives from the neural crest), but also in their physiopathology, since there are clinical similarities between renal and ocular involvement Persistent exposure of cells in all tissues to high levels of glucose induces lesions that, in general, are related to an imbalance in which glucose and other metabolites become substrates for metabolic pathways that usually do not use them, favoring the development of morphological and functional alterations that, once they have occurred, are practically irreversible. However, although lesions related to diabetic microenvironments are well characterized for nervous, cardiovascular and renal tissues, the same is not true for the cornea and even less so for the corneal endothelium. Studies in various populations that have attempted to evaluate the impact of the disease on the endothelium, while consistent in terms of morphological changes, give discordant results in terms of endothelial count and pachymetry. Therefore, we considered it important to evaluate the impact of diabetes on the endothelium by means of statistical models that make it possible to discriminate the age-associated changes described for these cells; in particular, for this analysis it was important to identify the effect of the disease on endothelial cell density and its ability to maintain relative stromal dehydration and control corneal thickness. So, a statistical model was constructed, based on a meta-regression that included type of diabetes and age as modulators, to evaluate the real impact of each type of DM (type 1 DM and type 2 DM) on corneal endothelial density and corneal thickness, as determined by pachymetry. This analysis showed that the cell count was significantly reduced by the disease, especially in patients with type 1 DM in whom the compromise was independent of the duration of the disease, and that the increase in corneal thickness in diabetic patients was greater than expected by age, regardless of the type of diabetes. These results, which clinically demonstrated the impact of hyperglycemia on the endothelium, supported the need to evaluate in vitro the effect of high glucose concentrations on these cells, particularly on their proliferation capacity, their ability to migrate to cover a defect and in the induction of apoptosis, the main type of cell death identified so far in these cells, which has been described within the responses of endothelial cells to oxidative stress, a key condition in diabetes pathophysiology. To evaluate changes in the proliferation capacity of endothelial cells, cell cultures from an immortalized line were exposed to a medium defined for them as basal and to a medium with a high concentration of glucose (55mM). The rate of change in cell density was monitored by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assays. In these experiments, cells with active metabolisms convert MTT into a purple-colored product which, once solubilized, enables any change in the number of viable cells to be evaluated by colorimetry. The tests performed showed an increase in the number of cells in the cultures exposed to high concentrations of glucose (55mM), with a significant difference after 24 hours; however, although the difference remained after 48 hours, after that time the cell count measured indirectly by the colorimetric method progressively reduced until, after 5 days, it equaled the number of viable cells of the other group. The influence of different glucose concentrations on the capacity of the endothelium to close a scratch in the monolayer was performed using the method described by Liang et al. in 2007 (Liang et al., 2007), in which a scratch is created in a cell monolayer, and photographs are then taken at regular intervals from the moment the lesion is generated until the "wound" closes. This makes it possible to compare the time it takes for the endothelial cells to close the wound under different conditions and to quantify the rate of cell migration. In these experiments, there was a significant delay in closing the defect in cells exposed to high concentrations of glucose compared to cells in basal media. While the latter took approximately 5-6 days to close the scratch, by that time cells exposed to high glucose levels had closed, on average, 50% of the distance. Finally, the evaluation of apoptosis was performed using a commercial kit (Roche Cell Death Detection ELISA PLUS) that uses the sandwich ELISA (enzyme immunoassay) technique with monoclonal antibodies for histones to determine mono- and oligonucleosomes in the cytoplasmic fraction of the cell lysates in each medium. These experiments demonstrated that exposure to high concentrations of glucose for 24 hours induced three times more apoptosis than that occurring in cells under basal conditions. In the pathophysiology of the deleterious processes associated with diabetes, the importance of electrophysiological processes has recently been identified. In renal and microglial cells, it has been shown that calcium-activated potassium channels of intermediate conductance (KCa3.1) seem to play an important role. However, the calcium-activated potassium channel (KCa) family had not previously been described in corneal endothelium and it was necessary to identify which channels of this family were expressed in these cells. We started with a bioinformatic analysis that allowed the in silico identification of these channels, after which the presence of the small conductance calcium-activated potassium channels KCa2.2 and KCa2.3, the intermediate conductance one KCa3.1 and the sodium-activated potassium channel KNa2.1 (Slick) in corneal endothelial cells was verified in vitro by PCR and in some cases by Western blot and immunolabeling. While the present work was being produced, Anumanthan et al. (2018) published a paper evaluating KCa3.1 activity in the corneal stroma that included microphotographs showing KCa3.1 expression in the endothelium, which backed up the results obtained. We proceeded to study what functions KCa3.1 has in the endothelium under basal conditions and whether these were modified when the cells were exposed to high concentrations of glucose. These experiments, which included chemical stimulation and inhibition of the channel, allowed us to identify the involvement of KCa3.1 channels in the processes of migration, proliferation and apoptosis. KCa3.1, the intermediate conductance channel of the calcium-activated potassium channel family, can be activated by 1-ethylbenzimidazolin-2-one (EBIO-1) and can be selectively inhibited by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34). These compounds were used to test the effect of channel stimulation and inhibition on the proliferation, migration and apoptosis of corneal endothelial cells exposed to both basal and hyperglycemic conditions. Channel stimulation with EBIO-1 had a significant inhibitory effect on endothelial cell proliferation when used at concentrations of 50, 100 and 200 µM, sufficient to counteract the proliferative effect identified under high glucose conditions during the first few days. Inhibition of the channel with TRAM-34 at concentrations of 2, 4 and 8 µM had the opposite effect, increasing cell proliferation under basal conditions, especially at the higher concentrations, and enhancing the proliferative effect identified under high glucose conditions, maintaining a higher number of viable cells for a longer time. As for migration, stimulation with EBIO-1 reduced the migration rate by approximately 50% under basal conditions and potentiated the effect seen under hyperglycemic conditions. In contrast, inhibition of KCa3.1 with TRAM-34 at 2 µM accelerated migration and even brought the migration rate of cells under high glucose conditions closer to those of basal cells, with smaller effects at higher concentrations. Finally, under basal conditions none of the concentrations described for EBIO-1 and for TRAM-34 increased the rate of apoptosis; however, this does happen in media with high glucose concentrations, EBIO-1 at concentrations of 100 µM and TRAM_34 at 4 µM. In conclusion, this work allowed us to identify the involvement of diabetes mellitus in the corneal endothelium by determining its role in the reduction of the density of this monolayer more than that physiologically expected by age, and its impact on the increase in pachymetry, in addition to identifying a more severe involvement in patients with type 1 diabetes mellitus compared to those with type 2. Additionally, we described for the first time the presence of small conductance calcium-activated potassium channels, the expression of the intermediate conductance channel and the existence of type 2 high conductance sodium-activated potassium channels in the corneal endothelium. Finally, we explored the participation of KCa 3.1 in the proliferation, migration and apoptosis of these cells and described their role as modulators of these processes in both basal and high glucose conditions, which is relevant in both physiological and pathological conditions, not only in relation to diabetes but probably in responses to other events. 2021-10-09 11:40:01: Script de automatizacion de embargos. Correo recibido 21 sep 2021: El día de ayer cargué en el repositorio institucional la tesis de doctorado titulada "CARACTERIZACIÓN FUNCIONAL DEL CANAL DE POTASIO ACTIVADO POR CALCIO DE CONDUCTANCIA INTERMEDIA (KCa3.1) EN EL ENDOTELIO DE LA CORNEA EN CONDICIONES FISIOLÓGICAS Y EN AMBIENTES HIPERGLÚCIDOS". He solicitado en el sistema el embargo de la misma dado que aún hay resultados pendientes de publicar y que quisiera presentarlos en artículos para revistas especializadas. Como el límite máximo de embargo son 2 años, quisiera solicitar que se mantuviera por este periodo de tiempo. Este correo tiene la intención de avisar de la marcación y las razones para ella de acuerdo con los lineamientos institucionales y preguntar si con este fin es necesario hacer alguna gestión adicional en este momento o con cierta periodicidad. Respuesta a correo 9 oct 2021: Hemos realizado la publicación de su documento: Caracterización funcional del canal de potasio activado por calcio de conductancia intermedia (KCa3.1) en el endotelio de la córnea en condiciones fisiológicas y en ambientes hiperglúcidos, el cual puede consultar en el siguiente enlace: https://repository.urosario.edu.co/handle/10336/32728 De acuerdo con su solicitud, el documento ha quedado embargado por 2 años hasta el 9 octubre de 2023 en concordancia con las Políticas de Acceso Abierto de la Universidad. Si usted desea dejarlo con acceso abierto antes de finalizar dicho periodo o si por el contrario desea extender el embargo al finalizar este tiempo, puede enviar un correo a esta misma dirección realizando la solicitud. Tenga en cuenta que los documentos en acceso abierto propician una mayor visibilidad de su producción académica y científica. De otra parte, dado que desea publicar su obra en una revista de prestigio, queremos invitarla a tomar una asesoría con nuestros asesores de información del CRAI, quienes podrán brindarle orientación en la identificación de una revista adecuada para su obra y acompañamiento en la edición para publicación. La solicitud de asesoría puede agendarla en el siguiente link: https://n9.cl/agendamiento_servicios_crai Universidad del Rosario
Databáze: OpenAIRE