Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

Autor: Jae Young Yoon, Tae Hyun Lee, Kyungha Ryu, Sung Hyun Kim, Yong Jin Kim, Jong-Won Park
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nuclear Engineering and Technology, Vol 53, Iss 1, Pp 304-313 (2021)
ISSN: 1738-5733
Popis: Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris’ Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.
Databáze: OpenAIRE