Lysosomal degradation of newly formed insulin granules contributes to beta cell failure in diabetes

Autor: Meryem Senkara, Michel Pinget, Yannick Schwab, Paul Saftig, Paolo Ronchi, Axel Ganzhorn, Julie Kerr-Conte, Elisa Maillard, Nicole L. Schieber, François Pattou, Zengzhen Liu, Victor Aubert, Alexander Goginashvili, Romeo Ricci, Kevin Vivot, Adrien Pasquier, Coralie Spiegelhalter, Gilbert Marciniak, Eric Erbs, Zhirong Zhang
Přispěvatelé: univOAK, Archive ouverte, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Christian-Albrechts-Universität zu Kiel (CAU), Defymed : Centre Européen Étude du Diabète (CEED), Diabète et thérapies cellulaires (DIATHEC), Université de Strasbourg (UNISTRA), Recherche translationnelle sur le diabète - U 1190 (RTD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), CHU Lille, European Genomic Institute for Diabetes - FR 3508 (EGID), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Sanofi-Aventis R&D, SANOFI Recherche, European Molecular Biology Laboratory [Heidelberg] (EMBL), Ludwig Institute for Cancer Research, University of California [San Diego] (UC San Diego), University of California (UC), Nouvel Hôpital Civil de Strasbourg, Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 (EGID), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE14-0027,LYSODIABETES,Régulation de la fonction lysosomale par les nutriments dans le diabète de type 2(2017)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0301 basic medicine
Male
medicine.medical_treatment
Science
Cell
General Physics and Astronomy
02 engineering and technology
Type 2 diabetes
[SDV.BC]Life Sciences [q-bio]/Cellular Biology
General Biochemistry
Genetics and Molecular Biology

Article
03 medical and health sciences
Diabetes
Insulin
Lysosome

Tetraspanin
Diabetes mellitus
Insulin-Secreting Cells
Insulin Secretion
Macroautophagy
medicine
Golgi
Animals
Humans
Insulin
lcsh:Science
Mechanistic target of rapamycin
[SDV.BC] Life Sciences [q-bio]/Cellular Biology
PI3K/AKT/mTOR pathway
Protein Kinase C
Multidisciplinary
biology
Chemistry
TOR Serine-Threonine Kinases
Autophagy
Diabetes
General Chemistry
021001 nanoscience & nanotechnology
medicine.disease
3. Good health
Cell biology
Mice
Inbred C57BL

030104 developmental biology
medicine.anatomical_structure
Diabetes Mellitus
Type 2

biology.protein
lcsh:Q
0210 nano-technology
Lysosomes
Zdroj: Nature Communications
Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-11170-4⟩
Nature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
ISSN: 2041-1723
Popis: Compromised function of insulin-secreting pancreatic β cells is central to the development and progression of Type 2 Diabetes (T2D). However, the mechanisms underlying β cell failure remain incompletely understood. Here, we report that metabolic stress markedly enhances macroautophagy-independent lysosomal degradation of nascent insulin granules. In different model systems of diabetes including of human origin, stress-induced nascent granule degradation (SINGD) contributes to loss of insulin along with mammalian/mechanistic Target of Rapamycin (mTOR)-dependent suppression of macroautophagy. Expression of Protein Kinase D (PKD), a negative regulator of SINGD, is reduced in diabetic β cells. Pharmacological activation of PKD counters SINGD and delays the onset of T2D. Conversely, inhibition of PKD exacerbates SINGD, mitigates insulin secretion and accelerates diabetes. Finally, reduced levels of lysosomal tetraspanin CD63 prevent SINGD, leading to increased insulin secretion. Overall, our findings implicate aberrant SINGD in the pathogenesis of diabetes and suggest new therapeutic strategies to prevent β cell failure.
Impaired beta-cell insulin secretion is a key pathological feature of type 2 diabetes. Here, the authors describe metabolic stress induced lysosomal degradation of newly formed insulin granules, independent of macroautophagy, as a potential mechanism for beta-cell dysfunction.
Databáze: OpenAIRE