Catabolism of HDL1 cholesteryl ester in the rat. Effect of ethinyl estradiol treatment
Autor: | Gérard Champarnaud, Catherine Feurgard, Tahar Hajri, Claude Lutton, Colette Sérougne, Jacqueline Férézou, Denis Mathé |
---|---|
Rok vydání: | 1999 |
Předmět: |
Male
Apolipoprotein E medicine.medical_specialty Metabolic Clearance Rate Ethinyl Estradiol General Biochemistry Genetics and Molecular Biology chemistry.chemical_compound Apolipoproteins E In vivo Internal medicine Adrenal Glands medicine Animals Rats Wistar Receptor Apolipoproteins A Receptors Lipoprotein Ecology Cholesterol Catabolism Cell Membrane Cholesterol HDL RNA-Binding Proteins Metabolism Rats Kinetics Endocrinology Liver Receptors LDL chemistry LDL receptor Cholesteryl ester lipids (amino acids peptides and proteins) Carrier Proteins Lipoproteins HDL Spleen |
Zdroj: | Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie. 322:591-596 |
ISSN: | 0764-4469 |
Popis: | The present study was performed in control and ethinyl estradiol-treated rats in order to determine the mechanisms involved in the catabolism of HDL1 cholesteryl ester. Ligand blottings on liver membranes showed that purified HDL1, containing about 70 % apolipoprotein E and 10 % apolipoprotein AI, bind to the LDL receptor (130 kDa) and not to HB2 (100 kDa) or SR-BI (82 kDa), candidate HDL receptors. Immunoblots showed that the treatment increased the hepatic level of the LDL receptor five- to ten-fold, strongly decreased that of SRBI and did not change that of HB2. An in vivo kinetic study showed that the turnover of HDL1 cholesteryl ester is more rapid in treated than control rats. The liver participation (60 %) in this clearance was not modified by the treatment. Therefore, it can be concluded that the catabolism of HDL1 cholesteryl ester, in control as in treated rats, is essentially ensured by the uptake of entire particles in the hepatocytes via LDL receptors. |
Databáze: | OpenAIRE |
Externí odkaz: |