Predicting whether aromatic molecules would prefer to enter a carbon nanotube: A density functional theory study
Autor: | Chiyoung Park, Jong-Won Song, Dae-Hwan Ahn |
---|---|
Rok vydání: | 2020 |
Předmět: |
010304 chemical physics
Graphene Hydrogen bond Intermolecular force General Chemistry Carbon nanotube 010402 general chemistry 01 natural sciences 0104 chemical sciences law.invention Computational Mathematics symbols.namesake chemistry.chemical_compound Aniline chemistry law Chemical physics 0103 physical sciences symbols Molecule Density functional theory van der Waals force |
Zdroj: | Journal of Computational Chemistry. 41:1261-1270 |
ISSN: | 1096-987X 0192-8651 |
Popis: | The interaction of a carbon nanotube (CNT) with various aromatic molecules, such as aniline, benzophenone, and diphenylamine, was studied using density functional theory able to compute intermolecular weak interactions (B3LYP-D3). CNTs of varying lengths were used, such as 4-CNT, 6-CNT, and 8-CNT (the numbers denoting relative lengths), with the lengths being chosen appropriately to save computation times. All aromatic molecules were found to exhibit strong intermolecular binding energies with the inner surface of the CNT, rather than the outer surface. Hydrogen bonding between two aromatic molecules that include N and O atoms is shown to further stabilize the intermolecular adsorption process. Therefore, when benzophenone and diphenylamine were simultaneously allowed to interact with a CNT, the aromatic molecules were expected to preferably enter the CNT. Furthermore, additional calculations of the intermolecular adsorption energy for aniline adsorbed on a graphene surface showed that the concavity of graphene-like carbon sheet is in proportion to the intermolecular binding energy between the graphene-like carbon sheet and the aromatic molecule. |
Databáze: | OpenAIRE |
Externí odkaz: |