Axiomatization of the degree of Fitzpatrick, Pejsachowicz and Rabier

Autor: Julián López-Gómez, Juan Carlos Sampedro
Rok vydání: 2021
Předmět:
Zdroj: E-Prints Complutense. Archivo Institucional de la UCM
instname
DOI: 10.48550/arxiv.2106.11431
Popis: In this paper, we prove an analogue of the uniqueness theorems of Führer [15] and Amann and Weiss [1] to cover the degree of Fredholm operators of index zero constructed by Fitzpatrick, Pejsachowicz and Rabier [13], whose range of applicability is substantially wider than for the most classical degrees of Brouwer [5] and Leray–Schauder [22]. A crucial step towards the axiomatization of this degree is provided by the generalized algebraic multiplicity of Esquinas and López-Gómez [8, 9, 25], $$\chi $$ χ , and the axiomatization theorem of Mora-Corral [28, 32]. The latest result facilitates the axiomatization of the parity of Fitzpatrick and Pejsachowicz [12], $$\sigma (\cdot ,[a,b])$$ σ ( · , [ a , b ] ) , which provides the key step for establishing the uniqueness of the degree for Fredholm maps.
Databáze: OpenAIRE