Using social cues to estimate possible destinations when driving a robotic wheelchair

Autor: Arturo Escobedo, Anne Spalanzani, Christian Laugier
Přispěvatelé: Geometry and Probability for Motion and Action (E-MOTION), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)
Rok vydání: 2014
Předmět:
Zdroj: IROS
IEEE/RSJ International Conference on Intelligent Robots and Systems
IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep 2014, Chicago, United States
DOI: 10.1109/iros.2014.6943021
Popis: Approaching a group of humans is an important navigation task. Although many methods have been proposed to avoid interrupting groups of people engaged in a conversation, just a few works have considered the proper way of joining those groups. Research in the field of social sciences have proposed geometric models to compute the best points to join a group. In this article we propose a method to use those points as possible destinations when driving a robotic wheelchair. Those points are considered together with other possible destinations in the environment such as points of interest or typical static destinations defined by the user's habits. The intended destina- tion is inferred using a Dynamic Bayesian Network that takes into account the contextual information of the environment and user's orders to compute the probability for each destination. Index Terms—Intention estimation, human aware navigation, semi-autonomous navigation, robotic wheelchair, face control, voice control. I. INTRODUCTION
Databáze: OpenAIRE