PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells
Autor: | Matthew R. Williamson, Richard A. Black, Cay M. Kielty |
---|---|
Rok vydání: | 2005 |
Předmět: |
Scaffold
Materials science Lipopolysaccharide Endothelium Polyesters Composite number Polyurethanes Biophysics Bioengineering Biocompatible Materials Nitric Oxide Nitric oxide Biomaterials chemistry.chemical_compound Materials Testing von Willebrand Factor medicine Cell Adhesion Humans Cell adhesion Cells Cultured Cell Proliferation Tissue Engineering Intercellular Adhesion Molecule-1 Electrospinning medicine.anatomical_structure chemistry Mechanics of Materials Polycaprolactone Ceramics and Composites Microscopy Electron Scanning Endothelium Vascular Laminin Biomedical engineering |
Zdroj: | Biomaterials. 27(19) |
ISSN: | 0142-9612 |
Popis: | A new compliant scaffold suitable for small-diameter vascular grafts has been developed that promotes strong attachment of endothelial cells. Composite scaffolds were produced by wet spinning polycaprolactone (PCL) fibres which form the luminal surface, then electrospinning porous polyurethane (PU) onto the back of the PCL fibres to form the vessel wall substitute. Human endothelial cells demonstrated strong attachment to the composite PCL-PU scaffold, and proliferated to form a monolayer with strong PECAM-1 expression and cobblestone morphology. Attached cells demonstrated abundant release of von Willebrand factor, nitric oxide and ICAM-1 under physiological stimuli, and exhibited an immune response to lipopolysaccharide. The composite scaffold may also deliver bioactive molecules. Active trypsin, used as a test molecule, had a defined 48 h pattern of release from luminal PCL fibres. These data confirm the potential of this novel composite scaffold in vascular tissue engineering. |
Databáze: | OpenAIRE |
Externí odkaz: |