Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin
Autor: | Ann C. Andersen, Jean-Claude Caprais, F. H. Lallier, J. Le Bruchec, N. Zorn, N. Potier, Carole Decker, Karine Olu, Emmanuelle Leize-Wagner |
---|---|
Přispěvatelé: | Chimie de la matière complexe (CMC), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Environnement Profond (LEP), Etudes des Ecosystèmes Profonds (EEP), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Adaptation et diversité en milieu marin (AD2M), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Adaptation et Biologie des Invertébrés en Conditions Extrêmes (ABICE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Station biologique de Roscoff [Roscoff] (SBR), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), univOAK, Archive ouverte |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0106 biological sciences
010504 meteorology & atmospheric sciences Sulfide Cooperativity Biology Oceanography 01 natural sciences Deep sea 14. Life underwater Hemoglobin [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography Sulfide-rich sediments 0105 earth and related environmental sciences mass spectrometry chemistry.chemical_classification oxygen affinity symbiont-bearing bivalve Mass spectrometry Ecology 010604 marine biology & hydrobiology Pockmark Hypoxia (environmental) blood-clams hemoglobin Oxygen affinity Cold seep Cold seeps [SDE.BE] Environmental Sciences/Biodiversity and Ecology Angola Basin chemistry Symbiont-bearing bivalve Environmental chemistry sulfide-rich sediments Blood-clams cold seeps [SDE.BE]Environmental Sciences/Biodiversity and Ecology Oxygen binding |
Zdroj: | Deep-sea Research Part Ii-topical Studies In Oceanography (0967-0645) (Pergamon-elsevier Science Ltd), 2017-08, Vol. 142, P. 219-232 Deep–Sea Research Deep–Sea Research, 2016 Deep Sea Research Part II: Topical Studies in Oceanography Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 142, pp.219-232. ⟨10.1016/j.dsr2.2016.11.009⟩ Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier, 2016, 142, pp.219-232. ⟨10.1016/j.dsr2.2016.11.009⟩ |
ISSN: | 0967-0645 |
DOI: | 10.1016/j.dsr2.2016.11.009⟩ |
Popis: | International audience; Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15–16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments. |
Databáze: | OpenAIRE |
Externí odkaz: |