Nature Inspires New Algorithms

Autor: Mohamed Slimane, Sébastien Aupetit
Přispěvatelé: Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT), Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Patrick Siarry
Rok vydání: 2016
Předmět:
Zdroj: Metaheuristics ISBN: 9783319454016
Metaheuristics
Patrick Siarry. Metaheuristics, Springer International Publishing, pp.263-286, 2016, 978-3-319-45401-6. ⟨10.1007/978-3-319-45403-0_10⟩
DOI: 10.1007/978-3-319-45403-0_10
Popis: International audience; Nature modeling is a leading trend in optimization methods. While genetic algorithms, ant-based methods, and particle swarm optimization are well-known examples, there is a continuous emergence of new algorithms inspired by nature. In this chapter, we give a short overview of the most recent promising new algorithms.
Databáze: OpenAIRE