Nature Inspires New Algorithms
Autor: | Mohamed Slimane, Sébastien Aupetit |
---|---|
Přispěvatelé: | Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT), Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Patrick Siarry |
Rok vydání: | 2016 |
Předmět: |
0209 industrial biotechnology
Computer science business.industry Computer Science::Neural and Evolutionary Computation Particle swarm optimization 02 engineering and technology Machine learning computer.software_genre [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] 020901 industrial engineering & automation 0202 electrical engineering electronic engineering information engineering Optimization methods Harmony search 020201 artificial intelligence & image processing Firefly algorithm Artificial intelligence [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] business Metaheuristic computer Algorithm |
Zdroj: | Metaheuristics ISBN: 9783319454016 Metaheuristics Patrick Siarry. Metaheuristics, Springer International Publishing, pp.263-286, 2016, 978-3-319-45401-6. ⟨10.1007/978-3-319-45403-0_10⟩ |
DOI: | 10.1007/978-3-319-45403-0_10 |
Popis: | International audience; Nature modeling is a leading trend in optimization methods. While genetic algorithms, ant-based methods, and particle swarm optimization are well-known examples, there is a continuous emergence of new algorithms inspired by nature. In this chapter, we give a short overview of the most recent promising new algorithms. |
Databáze: | OpenAIRE |
Externí odkaz: |