Nonlinear Color Space and Spatiotemporal MRF for Hierarchical Segmentation of Face Features in Video
Autor: | Franck Luthon, Marc Lievin |
---|---|
Přispěvatelé: | Laboratoire des images et des signaux (LIS), Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Informatique de l'Université de Pau et des Pays de l'Adour (LIUPPA), Université de Pau et des Pays de l'Adour (UPPA) |
Jazyk: | angličtina |
Rok vydání: | 2004 |
Předmět: |
Eye Movements
Computer science Facial analysis Lipreading Video Recording entropy power Information Storage and Retrieval 02 engineering and technology Eye face feature Facial recognition system Pattern Recognition Automated [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing motion 0202 electrical engineering electronic engineering information engineering Segmentation Computer vision Markov random field Signal Processing Computer-Assisted Computer Graphics and Computer-Aided Design Markov Chains 020201 artificial intelligence & image processing [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing Algorithms ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Color Image processing Color space Sensitivity and Specificity Image Interpretation Computer-Assisted Humans liptracking Face detection Hue Models Statistical business.industry segmentation Reproducibility of Results 020206 networking & telecommunications Pattern recognition Motion detection Image segmentation hue Image Enhancement Nonlinear Dynamics Face Artificial intelligence business Software |
Zdroj: | IEEE Transactions on Image Processing IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2004, 13 (1), pp.63-71. ⟨10.1109/TIP.2003.818013⟩ |
ISSN: | 1057-7149 |
DOI: | 10.1109/TIP.2003.818013⟩ |
Popis: | International audience; This paper addresses the design of the image processing stage for face analysis. In human computer interfaces, user-friendliness requires robustness and good quality in image processing. To cope with unsupervised lighting conditions and unknown speaker, two original preprocessing tools are introduced here: a logarithmic color transform and an entropy-based motion threshold. As regards the main processing stage, a hierarchical segmentation scheme based on Markov random fields is proposed, that combines color and motion observations within a spatiotemporal neighborhood. Relevant face regions are thereafter automatically segmented. The good quality of the label fields enables localization and tracking of the face. Geometrical measurements on facial feature edges, such as lips or eyes, are provided by an active contour postprocessing stage. Results are shown both on well-known test sequences, and also on typical sequences acquired from micro and motorized cameras. The robustness and accuracy of the extracted contours are promising for any real-time application aiming at facial communication in unsupervised viewing conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |