The normal closure of big Dehn twists, and plate spinning with rotating families
Autor: | François Dahmani |
---|---|
Přispěvatelé: | Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), IUF, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
20E07
Pure mathematics 010102 general mathematics Closure (topology) projection complexes Group Theory (math.GR) Disjoint sets mapping class group 01 natural sciences Dehn twist Mathematics::Geometric Topology Mapping class group [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] Mathematics::Group Theory Projection (mathematics) rotating families 0103 physical sciences FOS: Mathematics 010307 mathematical physics Geometry and Topology 0101 mathematics 20F65 Mathematics - Group Theory Mathematics |
Zdroj: | Geom. Topol. Geom. Topol., 2018, 22, pp.4113-4144. ⟨10.2140/gt.2018.22.4113⟩ Geom. Topol. 22, no. 7 (2018), 4113-4144 |
DOI: | 10.2140/gt.2018.22.4113⟩ |
Popis: | We study the normal closure of a big power of one or several Dehn twists in a Mapping Class Group. We prove that it has a presentation whose relators consists only of commutators between twists of disjoint support, thus answering a question of Ivanov. Our method is to use the theory of projection complexes of Bestvina Bromberg and Fujiwara, together with the theory of rotating families, simultaneously on several spaces. 32 pages |
Databáze: | OpenAIRE |
Externí odkaz: |