Renormalizing the Kardar–Parisi–Zhang Equation in $$d\ge 3$$ in Weak Disorder

Autor: Francis Comets, Clément Cosco, Chiranjib Mukherjee
Přispěvatelé: Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Zdroj: Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, 2020, 179 (3), pp.713-728. ⟨10.1007/s10955-020-02539-7⟩
ISSN: 1572-9613
0022-4715
Popis: We study Kardar–Parisi–Zhang equation in spatial dimension 3 or larger driven by a Gaussian space–time white noise with a small convolution in space. When the noise intensity is small, it is known that the solutions converge to a random limit as the smoothing parameter is turned off. We identify this limit, in the case of general initial conditions ranging from flat to droplet. We provide strong approximations of the solution which obey exactly the limit law. We prove that this limit has sub-Gaussian lower tails, implying existence of all negative (and positive) moments.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje