Nature Communications

Autor: Daniel F. English, Srdjan Ostojic, Sam McKenzie, Olivier Hagens, Josef Ladenbauer
Přispěvatelé: Laboratoire de Neurosciences Cognitives & Computationnelles (LNC2), Département d'Etudes Cognitives - ENS Paris (DEC), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM), School of Neuroscience
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0301 basic medicine
Patch-Clamp Techniques
Computer science
Spike train
General Physics and Astronomy
Action Potentials
Quantitative Biology::Cell Behavior
fire neurons
Mice
Computer Science::Emerging Technologies
0302 clinical medicine
Dynamical systems
lcsh:Science
Neural decoding
currents
Network model
Visual Cortex
Neurons
0303 health sciences
Likelihood Functions
Multidisciplinary
Estimation theory
Pyramidal Cells
dynamics
connectivity
Excitatory postsynaptic potential
Spike (software development)
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
Single trial
Science
Quantitative Biology::Tissues and Organs
Inhibitory postsynaptic potential
General Biochemistry
Genetics and Molecular Biology

Synthetic data
Article
Quantitative Biology::Subcellular Processes
03 medical and health sciences
framework
Interneurons
Animals
Computer Simulation
Neuronal adaptation
030304 developmental biology
Network models
Quantitative Biology::Neurons and Cognition
business.industry
variability
Model selection
Reproducibility of Results
Pattern recognition
Statistical model
General Chemistry
Cortical neurons
Rats
030104 developmental biology
networks
lcsh:Q
maximum-likelihood
Artificial intelligence
business
Neuroscience
030217 neurology & neurosurgery
Zdroj: Nature Communications
Nature Communications, Nature Publishing Group, 2019, 10 (1), ⟨10.1038/s41467-019-12572-0⟩
Nature Communications, Vol 10, Iss 1, Pp 1-17 (2019)
ISSN: 2041-1723
Popis: The interpretation of neuronal spike train recordings often relies on abstract statistical models that allow for principled parameter estimation and model selection but provide only limited insights into underlying microcircuits. In contrast, mechanistic models are useful to interpret microcircuit dynamics, but are rarely quantitatively matched to experimental data due to methodological challenges. Here we present analytical methods to efficiently fit spiking circuit models to single-trial spike trains. Using derived likelihood functions, we statistically infer the mean and variance of hidden inputs, neuronal adaptation properties and connectivity for coupled integrate-and-fire neurons. Comprehensive evaluations on synthetic data, validations using ground truth in-vitro and in-vivo recordings, and comparisons with existing techniques demonstrate that parameter estimation is very accurate and efficient, even for highly subsampled networks. Our methods bridge statistical, data-driven and theoretical, model-based neurosciences at the level of spiking circuits, for the purpose of a quantitative, mechanistic interpretation of recorded neuronal population activity.
It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks.
Databáze: OpenAIRE