A large family of indecomposable projective modules for the Khovanov-Kuperberg algebra of $sl_3$-webs

Autor: Louis-Hadrien Robert
Přispěvatelé: Université Paris Diderot - Paris 7 (UPD7)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Journal of Knot Theory and Its Ramifications
Journal of Knot Theory and Its Ramifications, 2013, 22 (11), pp.1350062. ⟨10.1142/S0218216513500624⟩
ISSN: 0218-2165
DOI: 10.1142/S0218216513500624⟩
Popis: We recall a construction of Mackaay, Pan and Tubbenhauer of the algebras $K^{\epsilon}$ which allow to understand the $sl_3$ homology for links in a local way (i.e. for tangles). Then, by studying the combinatorics of the Kuperberg bracket, we give a large family of non-elliptic webs whose associated projective $K^{\epsilon}$-modules are indecomposable.
Comment: Minor changes, 21 pages, 24 figures
Databáze: OpenAIRE