A large family of indecomposable projective modules for the Khovanov-Kuperberg algebra of $sl_3$-webs
Autor: | Louis-Hadrien Robert |
---|---|
Přispěvatelé: | Université Paris Diderot - Paris 7 (UPD7) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Pure mathematics
Algebra and Number Theory Geometric Topology (math.GT) Homology (mathematics) Mathematics::Geometric Topology Mathematics - Geometric Topology Mathematics::Quantum Algebra Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Algebraic Topology (math.AT) Mathematics - Combinatorics Combinatorics (math.CO) Mathematics - Algebraic Topology [MATH]Mathematics [math] Projective test Mathematics::Representation Theory Indecomposable module Mathematics |
Zdroj: | Journal of Knot Theory and Its Ramifications Journal of Knot Theory and Its Ramifications, 2013, 22 (11), pp.1350062. ⟨10.1142/S0218216513500624⟩ |
ISSN: | 0218-2165 |
DOI: | 10.1142/S0218216513500624⟩ |
Popis: | We recall a construction of Mackaay, Pan and Tubbenhauer of the algebras $K^{\epsilon}$ which allow to understand the $sl_3$ homology for links in a local way (i.e. for tangles). Then, by studying the combinatorics of the Kuperberg bracket, we give a large family of non-elliptic webs whose associated projective $K^{\epsilon}$-modules are indecomposable. Comment: Minor changes, 21 pages, 24 figures |
Databáze: | OpenAIRE |
Externí odkaz: |