Combinatorics of orbit configuration spaces
Autor: | Christin Bibby, Nir Gadish |
---|---|
Rok vydání: | 2018 |
Předmět: |
Group (mathematics)
General Mathematics 010102 general mathematics Structure (category theory) 0102 computer and information sciences Cartesian product Space (mathematics) 01 natural sciences Combinatorics symbols.namesake 010201 computation theory & mathematics symbols FOS: Mathematics Mathematics - Combinatorics Algebraic Topology (math.AT) Mathematics - Algebraic Topology Configuration space Combinatorics (math.CO) 0101 mathematics Orbit (control theory) Partially ordered set Mathematics Complement (set theory) |
DOI: | 10.48550/arxiv.1804.06863 |
Popis: | From a group action on a space, define a variant of the configuration space by insisting that no two points inhabit the same orbit. When the action is almost free, this "orbit configuration space" is the complement of an arrangement of subvarieties inside the cartesian product, and we use this structure to study its topology. We give an abstract combinatorial description of its poset of layers (connected components of intersections from the arrangement) which turns out to be of much independent interest as a generalization of partition and Dowling lattices. The close relationship to these classical posets is then exploited to give explicit cohomological calculations. Comment: 34 pages |
Databáze: | OpenAIRE |
Externí odkaz: |