Convection and total variation flow—erratum and improvement

Autor: Robert Eymard, François Bouchut, David Doyen
Přispěvatelé: Laboratoire Analyse et Mathématiques Appliquées (LAMA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2017, 37 (4), pp.2139-2169. ⟨10.1093/imanum/drw076⟩
ISSN: 0272-4979
1464-3642
DOI: 10.1093/imanum/drw076⟩
Popis: International audience; This paper includes an erratum to (Bouchut et al. (2014) Convection and total variation flow. IMA J. Numer. Anal.,34, 1037–1071.) which deals with a nonlinear hyperbolic scalar conservation law, regularized by the total variation flow operator (or 1-Laplacian), and in which a mistake occurred in the convergence proof of the numerical scheme to the continuous entropy solution. For correcting the proof, it is necessary to introduce an additional vanishing viscous term in the scheme. This modification requires casting the whole paper in the framework of discrete and continuous solutions with unbounded support. This new version, nevertheless, leads to a better result than the previous one, since the bounded variation regularity and the compactness of the support of the initial data are no longer assumed.
Databáze: OpenAIRE