Material density mapping on deformable 3D models of human organs
Autor: | Manescu, Petru, Azencot, Joseph, Beuve, Michael, Ladjal, Hamid, Saade, Jacques, Jean-Michel Morreau, Giraud, Philippe, Shariat, Behzad |
---|---|
Přispěvatelé: | Simulation, Analyse et Animation pour la Réalité Augmentée (SAARA), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Rayet, Béatrice |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | ICBBE 2012 : International Conference on Biomechanics and Biomedical Engineering ICBBE 2012 : International Conference on Biomechanics and Biomedical Engineering, Jun 2012, Copenhagen, Denmark. pp.131-140 |
ISSN: | 1930-9341 |
Popis: | Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach. {"references":["W. Schneider, T. Bortfeld, W. Schelgel, Correlation between CT numbers\nand tissue parameters needed for Monte Carlo simulations of clinical\ndose distributions, Phys. Med. Biol. 45; 459-478, 2000.","J. Seco, G. Sharp, Z. Wu, D. Gierga, F. Buettner, H. Paganetti, Dosimetric\nimpact of motion in free-breathing and gated lung radiotherapy: A 4D\nMonte Carlo study of intrafraction and interfraction effects, Med. Phys;\n35(1): 356-366, 2008.","M. Rosu, I.J. Chetty, J.M. Balter, M.L. Kessler, D.L. McShan, R.K. Ten\nHaken Dose reconstruction in deforming lung anatomy: dose grid size\neffects and clinical implications. Med. Phys;32:248795, 2005.","D. Sarrut, Deformable registration for image-guided radiation therapy,\nZeitschrift fur medizinische Physik 16 (4), 285-97, 2006.","V. Boldea, G. Sharp, S. Jiang, D. Sarrut, 4D-CT lung motion estimation\nwith deformable registration. Quantification of motion nonlinearity and\nhysteresis, Medical Physics 35 (3), 1008, 2008.","S. Flampouri, S.B. Jiang, G.C. Sharp, J. Wolfgang, A.A. Patel, N.C. Choi,\nEstimation of the delivered patient dose in lung IMRT treatment based\non deformable registration of 4D-CT data and Monte Carlo simulations.\nPhys. Med. Biol;51:276379, 2006.","E. Heath, J. Sentjens. A direct voxel tracking method for fourdimensional\nMonte Carlo dose calculation in deforming anatomy. Med.\nPhys;33:43445, 2006.","M. Velec, J. Moseley, B. Math, C. Eccles, T. Craig, M. Sharpe, L. Dawson,\nK. Brock, Effect of breathing motion on radiotherapy dose accumulation\nin the abdomen using deformable registration. Int. J Radiation Oncology\nBiol. Phys., Vol 80, No. 1, 265-272, 2011.","J. Saade, A.L. Didier, P.F. Villard, R. Buttin, J.M. Moreau, M. Beuve,\nB. Shariat, A preliminary study for biomechanical model of the respiratpry\nsystem, VISAPP, 2010.\n[10] A. Al-Mayah , J. Moseley , M. Velec, K. Brock , Toward efficient\nbiomechanical-based deformable image registration of lungs for imageguided\nradiotherapy, Phys. Med. Biol. volume 56, number 15, 56 4701,\n2011.\n[11] M. Velec, J. Moseley, B. Math, T. Craig, , L. Dawson, K. Brock,\nAccumulated dose in liver stereotactic body radiotherapy:positioning,\nbreathing and deformation effects. Int. J Radiation Oncology Biol. Phys.,\nVol 80, No. 1, 1-9, 2011.\n[12] K. Brock , D. McShan , R. Ten Haken , S. Hollister , L. Dawson ,\nJ. Balter , Inclusion of organ deformation in dose calculations, Medical\nPhysics , Vol. 30 (3), 290-295, 2003.\n[13] A. Bhatt , R. Wakhedhar , Reverse Engineering of Human Body: A Bspline\nbased Heterogeneous Modeling Approach, Computer-Aided Design\nand Applications, www.cadanda.com, 2008.\n[14] M. Kalos , P. Whitlock , Monte Carlo Methods, Wiley, New York, 1986.\n[15] C. Rocchini , P. Cignoni , Generating random points in a tetrahedron,\nJournal of Graphics Tools, Vol. 5, 200, 2001.\n[16] T. Yoo , MJ. Ackerman , WE. Lorensen , Engineering and algorithm\ndesign for an image processing Api: a techiincal report on ITK - the Insight\nToolkit, Stud Health Technol Inform 85: 586-92, http://www.itk.org,\n2002.\n[17] W. Schroeder , K. Martin , B. Lorensen , The Visualization Toolkit, ISBN\n978-1930934191, http://www.vtk.org, 2006.\n[18] P. Yushkevich , J. Piven , H. Hazlett , R. Smith , S. Ho , J. Gee ,\nG. Gerig , User-guided 3D active contour segmentation of anatomical\nstructures: Significantly improved efficiency and reliability, Neuroimage\n31(3);1116-28, 2006.\n[19] M. Attene , B. Falcidieno , ReMesh: An interactive Environment to Edit\nand Repair Triangle Meshes, Procs of Shape Modeling International (SMI\n-06), IEEE C.S Press; 271-276, 2006.\n[20] Z. Zhang , Iterative Point Matching for Registration of Free-form Curves,\nInternational Journal of Computer Vision, 13:2, 119-152, 1994."]} |
Databáze: | OpenAIRE |
Externí odkaz: |