Clustering Learning for Robotic Vision

Autor: Culurciello, Eugenio, Bates, Jordan, Dundar, Aysegul, Pérez Carrasco, José Antonio, Farabet, Clément
Přispěvatelé: Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Popis: We present the clustering learning technique applied to multi-layer feedforward deep neural networks. We show that this unsupervised learning technique can compute network filters with only a few minutes and a much reduced set of parameters. The goal of this paper is to promote the technique for general-purpose robotic vision systems. We report its use in static image datasets and object tracking datasets. We show that networks trained with clustering learning can outperform large networks trained for many hours on complex datasets.
Code for this paper is available here: https://github.com/culurciello/CL_paper1_code
Databáze: OpenAIRE