A Prediction Model for Cognitive Impairment Risk in Colorectal Cancer after Chemotherapy Treatment
Autor: | Jing-Jing Li, Shu-Ping Zhou, Hui-Hui Han, Shuang Yang, Chun-Yang Zhao, Su-Ding Fei |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Male
Oncology medicine.medical_specialty Article Subject Colorectal cancer Logistic regression Models Biological General Biochemistry Genetics and Molecular Biology 03 medical and health sciences 0302 clinical medicine Predictive Value of Tests Internal medicine medicine Humans Cognitive Dysfunction Aged General Immunology and Microbiology Receiver operating characteristic business.industry Area under the curve Regression analysis General Medicine Middle Aged Nomogram medicine.disease Random forest Nomograms 030220 oncology & carcinogenesis Medicine Female Colorectal Neoplasms business 030217 neurology & neurosurgery Predictive modelling Research Article |
Zdroj: | BioMed Research International, Vol 2021 (2021) BioMed Research International |
ISSN: | 2314-6141 2314-6133 |
Popis: | Background. A prediction model can be developed to predict the risk of cancer-related cognitive impairment in colorectal cancer patients after chemotherapy. Methods. A regression analysis was performed on 386 colorectal cancer patients who had undergone chemotherapy. Three prediction models (random forest, logistic regression, and support vector machine models) were constructed using collected clinical and pathological data of the patients. Calibration and ROC curves and C -indexes were used to evaluate the selected models. A decision curve analysis (DCA) was used to determine the clinical utility of the line graph. Results. Three prediction models including a random forest, a logistic regression, and a support vector machine were constructed. The logistic regression model had the strongest predictive power with an area under the curve (AUC) of 0.799. Age, BMI, colostomy, complications, CRA, depression, diabetes, QLQ-C30 score, exercise, hypercholesterolemia, diet, marital status, education level, and pathological stage were included in the nomogram. The C -index (0.826) and calibration curve showed that the nomogram had good predictive ability and the DCA curves indicated that the model had strong clinical utility. Conclusions. A prediction model with good predictive ability and practical clinical value can be developed for predicting the risk of cognitive impairment in colorectal cancer after chemotherapy. |
Databáze: | OpenAIRE |
Externí odkaz: |