Laser-induced forward transfer for improving fine-line metallization in photovoltaic applications
Autor: | B. Mouhamadou, T. Sarnet, Philippe Delaporte, M. I. Sanchez-Aniorte, Anne-Patricia Alloncle |
---|---|
Přispěvatelé: | Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Evolution et Diversité Biologique (EDB), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Laboratoire Lasers, Plasmas et Procédés photoniques (LP3), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Alternative methods
Computer science Photovoltaic system Nanotechnology 02 engineering and technology General Chemistry Fine line 010402 general chemistry 021001 nanoscience & nanotechnology Laser 01 natural sciences Engineering physics 0104 chemical sciences law.invention Lift (force) Grid pattern law [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic General Materials Science 0210 nano-technology Electrical conductor Contact formation |
Zdroj: | Applied physics. A, Materials science & processing Applied physics. A, Materials science & processing, Springer Verlag, 2016, 122 (6), ⟨10.1007/s00339-016-0113-9⟩ Applied physics. A, Materials science & processing, 2016, 122 (6), ⟨10.1007/s00339-016-0113-9⟩ |
ISSN: | 5241-5244 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-016-0113-9⟩ |
Popis: | International audience; Grand challenges to create new front metallization techniques in photovoltaic focus considerable attention on laser-induced forward transfer (LIFT) approach. This alternative method aims to overcome the limitations of the well-established and mature screen-printing (SP) technique. Such limitations are for instance restrictions in the grid pattern design, high-temperature steps, and limited aspect ratio of the line contact (Poulain et al. in Appl Surf Sci 257: 5241-5244, 2011). Although different new front contact metallization concepts have been studied, most of them require a second print step to increase the volume of the contact (Gao et al. in Proceedings of 25th EU PVSEC conference, 2010; Beaucarne and Schubert in Energy Proc 67: 2-12, 2015; Lossen and Matusovsky in Energy Proc 67: 156-162, 2015; Green in Phys E 14: 65-70, 2002; Lennon et al. in Prog Photovolt Res Appl V21: 1454-1468, 2012). As a result, it is desirable to find innovative metallization techniques to improve the cell efficiency without significantly increasing the cost. Although many challenges remain before to obtain high-quality, robust, and high-performance LIFT contact formation, it required a fully theoretical and experimental assessment. This paper presents the results of a study of the LIFT technique in picosecond regime and thick silver pastes to create high-quality conductive lines for photovoltaic applications. |
Databáze: | OpenAIRE |
Externí odkaz: |