SYMMETRIES AND LIE ALGEBRA OF THE DIFFERENTIAL–DIFFERENCE KADOMSTEV–PETVIASHVILI HIERARCHY
Autor: | Xiao-ying Zhu, Da-jun Zhang, Xian-Long Sun, Deng-yuan Chen |
---|---|
Rok vydání: | 2010 |
Předmět: |
Pure mathematics
Nonlinear Sciences - Exactly Solvable and Integrable Systems Hierarchy (mathematics) FOS: Physical sciences Statistical and Nonlinear Physics Mathematics::Spectral Theory Condensed Matter Physics Nonlinear Sciences::Exactly Solvable and Integrable Systems Isospectral Homogeneous space Lie algebra Exactly Solvable and Integrable Systems (nlin.SI) Differential (mathematics) Mathematics |
Zdroj: | Modern Physics Letters B. 24:1033-1042 |
ISSN: | 1793-6640 0217-9849 |
DOI: | 10.1142/s0217984910023098 |
Popis: | By introducing suitable non-isospectral flows we construct two sets of symmetries for the isospectral differential-difference Kadomstev-Petviashvili hierarchy. The symmetries form an infinite dimensional Lie algebra. Comment: 9 pages |
Databáze: | OpenAIRE |
Externí odkaz: |