The Dual Kaczmarz Algorithm
Autor: | Mary K. Vaughan, Anna Aboud, Steven N. Harding, Eric Weber, Emelie Curl |
---|---|
Rok vydání: | 2019 |
Předmět: |
Mathematics::Functional Analysis
Sequence High Energy Physics::Lattice Applied Mathematics High Energy Physics::Phenomenology 010102 general mathematics Hilbert space 41A65 65D15 (Primary) 42C15 65F10 (Secondary) 01 natural sciences Functional Analysis (math.FA) Separable space Mathematics - Functional Analysis Nonlinear Sciences::Chaotic Dynamics 010101 applied mathematics Combinatorics Mathematics::Group Theory symbols.namesake Kaczmarz algorithm FOS: Mathematics symbols 0101 mathematics Mathematics |
Zdroj: | Acta Applicandae Mathematicae. 165:133-148 |
ISSN: | 1572-9036 0167-8019 |
DOI: | 10.1007/s10440-019-00244-6 |
Popis: | The Kaczmarz algorithm is an iterative method for solving a system of linear equations. It can be extended so as to reconstruct a vector $x$ in a (separable) Hilbert space from the inner-products $\{\langle x, \phi_{n} \rangle\}$. The Kaczmarz algorithms defines a sequence of approximations from the sequence $\{\langle x, \phi_{n} \rangle\}$; these approximations only converge to $x$ when $\{\phi_{n}\}$ is ${effective}$. We dualize the Kaczmarz algorithm so that $x$ can be obtained from $\{\langle x, \phi_{n} \rangle\}$ by using a second sequence $\{\psi_{n}\}$ in the reconstruction. This allows for the recovery of $x$ even when the sequence $\{\phi_{n}\}$ is not effective; in particular, our dualization yields a reconstruction when the sequence $\{\phi_{n}\}$ is $almost$ $effective$. We also obtain some partial results characterizing when the sequence of approximations from $\{\langle x, \phi_{n} \rangle\}$ using $\{\psi_{n}\}$ converges to $x$, in which case $\{(\phi_n, \psi_n)\}$ is called an $effective$ $pair$. Comment: 15 pages |
Databáze: | OpenAIRE |
Externí odkaz: |