Boolean FIP ring extensions
Autor: | Martine Picavet-L'Hermitte, Gabriel Picavet |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Discrete mathematics
Computer Science::Computer Science and Game Theory Algebra and Number Theory 010102 general mathematics Support of a module 010103 numerical & computational mathematics Commutative ring Computer Science::Computational Complexity Commutative Algebra (math.AC) Mathematics - Commutative Algebra 01 natural sciences Lattice (order) FOS: Mathematics Astrophysics::Solar and Stellar Astrophysics Galois extension 0101 mathematics [MATH]Mathematics [math] Mathematics |
Zdroj: | Communications in Algebra Communications in Algebra, Taylor & Francis, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩ Communications in Algebra, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩ |
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927872.2019.1708088⟩ |
Popis: | We characterize extensions of commutative rings $R \subseteq S$ whose sets of subextensions $[R,S]$ are finite ({\it i.e.} $R\subseteq S$ has the FIP property) and are Boolean lattices, that we call Boolean FIP extensions. Some characterizations involve ``factorial" properties of the poset $[R,S]$. A non trivial result is that each subextension of a Boolean FIP extension is simple (i.e. $R \subseteq S$ is a simple pair). 42 pages |
Databáze: | OpenAIRE |
Externí odkaz: |