Boolean FIP ring extensions

Autor: Martine Picavet-L'Hermitte, Gabriel Picavet
Přispěvatelé: Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Communications in Algebra
Communications in Algebra, Taylor & Francis, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩
Communications in Algebra, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩
ISSN: 0092-7872
1532-4125
DOI: 10.1080/00927872.2019.1708088⟩
Popis: We characterize extensions of commutative rings $R \subseteq S$ whose sets of subextensions $[R,S]$ are finite ({\it i.e.} $R\subseteq S$ has the FIP property) and are Boolean lattices, that we call Boolean FIP extensions. Some characterizations involve ``factorial" properties of the poset $[R,S]$. A non trivial result is that each subextension of a Boolean FIP extension is simple (i.e. $R \subseteq S$ is a simple pair).
42 pages
Databáze: OpenAIRE