The Hopf algebra of odd symmetric functions
Autor: | Alexander P. Ellis, Mikhail Khovanov |
---|---|
Rok vydání: | 2012 |
Předmět: |
Mathematics(all)
Pure mathematics General Mathematics 0102 computer and information sciences Commutative ring Bilinear form 01 natural sciences Schur functions Mathematics - Quantum Algebra FOS: Mathematics Mathematics - Combinatorics Quantum Algebra (math.QA) Representation Theory (math.RT) 0101 mathematics Algebra over a field Mathematics 05E05 (Primary) 16T05 17A70 (Secondary) 010102 general mathematics Hopf algebra Symmetric functions Superalgebra Symmetric function Hopf algebras 010201 computation theory & mathematics Combinatorics (math.CO) Change of basis Mathematics - Representation Theory |
Zdroj: | Advances in Mathematics. 231:965-999 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2012.04.031 |
Popis: | We consider a q-analogue of the standard bilinear form on the commutative ring of symmetric functions. The q=-1 case leads to a Z-graded Hopf superalgebra which we call the algebra of odd symmetric functions. In the odd setting we describe counterparts of the elementary and complete symmetric functions, power sums, Schur functions, and combinatorial interpretations of associated change of basis relations. Comment: 43 pages, 12 figures. v2: some corrections |
Databáze: | OpenAIRE |
Externí odkaz: |