The Hopf algebra of odd symmetric functions

Autor: Alexander P. Ellis, Mikhail Khovanov
Rok vydání: 2012
Předmět:
Zdroj: Advances in Mathematics. 231:965-999
ISSN: 0001-8708
DOI: 10.1016/j.aim.2012.04.031
Popis: We consider a q-analogue of the standard bilinear form on the commutative ring of symmetric functions. The q=-1 case leads to a Z-graded Hopf superalgebra which we call the algebra of odd symmetric functions. In the odd setting we describe counterparts of the elementary and complete symmetric functions, power sums, Schur functions, and combinatorial interpretations of associated change of basis relations.
Comment: 43 pages, 12 figures. v2: some corrections
Databáze: OpenAIRE