Wheat Bran Pretreatment by Room Temperature Ionic Liquid-Water Mixture: Optimization of Process Conditions by PLS-Surface Response Design: Optimization of Process Conditions by PLS-Surface Response Design

Autor: Eric Husson, Romain Roulard, Catherine Sarazin, Doriane Gérard, Caroline Rémond, Harivoni Rakotoarivonina, Jorge Saavedra-Torrico, Isabelle Gosselin, Monica Araya-Farias, Virginie Lambertyn
Přispěvatelé: Institut Galien Paris-Sud (IGPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Génie Enzymatique et Cellulaire (GEC), Université de Technologie de Compiègne (UTC)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Pontificia Universidad Católica de Valparaíso (PUCV), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Université de Picardie Jules Verne (UPJV), Fractionnement des AgroRessources et Environnement - UMR-A 614 (FARE), Université de Reims Champagne-Ardenne (URCA)-SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Fractionnement des AgroRessources et Environnement (FARE), Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA), Interreg France-Wallonie-Vlaanderen through the ValBran project, European Union (EU), Province West of Flanders, Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA)-SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Génie Enzymatique et Cellulaire. Reconnaissance Moléculaire et Catalyse - UMR CNRS 7025 (GEC UPJV), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Biologie des Plantes et Innovation - UR UPJV 3900 (BIOPI), Université de Picardie Jules Verne (UPJV)-Transfrontalière BioEcoAgro - UMR 1158 (BioEcoAgro), Université d'Artois (UA)-Université de Liège-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Sarazin, Catherine
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Lignocellulosic biomass
02 engineering and technology
Xylose
biomasse lignocellulosique
010402 general chemistry
7. Clean energy
01 natural sciences
lcsh:Chemistry
rendement en sucre
Hydrolysis
chemistry.chemical_compound
[CHIM.GENI]Chemical Sciences/Chemical engineering
hemicellulolytic cocktail
Enzymatic hydrolysis
biomasse
room temperature ionic liquid
Sugar
partial least square surface response design
ENZYMATIC-HYDROLYSIS
LIGNOCELLULOSIC BIOMASS
SUGARCANE BAGASSE
C-13 NMR
CELLULOSE
SACCHARIFICATION
STRAW
BIOREFINERY
DISSOLUTION
ACID
Original Research
2. Zero hunger
ionic liquid-water mixture
Bran
son de blé
enzymatic hydrolysis
General Chemistry
pretreatment
021001 nanoscience & nanotechnology
0104 chemical sciences
Chemistry
Monomer
chemistry
lcsh:QD1-999
Ionic liquid
prétraitement
0210 nano-technology
wheat bran
Nuclear chemistry
Zdroj: Frontiers in Chemistry
Frontiers in Chemistry, Frontiers, 2019, 7, pp.585. ⟨10.3389/fchem.2019.00585⟩
Frontiers in Chemistry, Frontiers Media, 2019, 7, pp.585. ⟨10.3389/fchem.2019.00585⟩
Frontiers in Chemistry, 2019, 7, pp.585. ⟨10.3389/fchem.2019.00585⟩
Frontiers in Chemistry, Vol 7 (2019)
Frontiers in Chemistry (7), . (2019)
ISSN: 2296-2646
DOI: 10.3389/fchem.2019.00585⟩
Popis: Room Temperature Ionic Liquids (RTILs) pretreatment are well-recognized to improve the enzymatic production of platform molecules such as sugar monomers from lignocellulosic biomass (LCB). The conditions for implementing this key step requires henceforth optimization to reach a satisfactory compromise between energy saving, required RTIL amount and hydrolysis yields. Wheat bran (WB) and destarched wheat bran (DWB), which constitute relevant sugar-rich feedstocks were selected for this present study. Pretreatments of these two distinct biomasses with various 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc])-water mixtures prior to hydrolysis catalyzed by hemicellulolytic cocktail (Cellic CTec2) were finely investigated. The main operating conditions such as pretreatment temperature (25-150 degrees C), time (40-180 min), WB and DWB loading (2-5% w/v) and concentration of [C2mim][OAc] in water [10-100% (v/v)] were screened through glucose and xylose yields and then optimized through a Partial Least Square (PLS)-Second Order Design. In an innovative way, the PLS results showed that the four factors and their interactions could be well-fitted by a second-order model (p < 0.05). The quadratic PLS models were used to predict optimal pretreatment conditions. Thus, maximum glucose (83%) and xylose (95%) yields were obtained from enzymatic hydrolysis of WB pretreated at 150 degrees C for 40 min with 10% of [C2mim][OAc] in water and 5% of WB loading. For DWB, maximum glucose (100%) and xylose (57%) yields were achieved for pretreatment temperatures of 150 degrees C and 25 degrees C, respectively. The required duration was still 40 min, with 20% of [C2mim][OAc] in water and a 5% DWB loading. Then, Multiple Response Optimization (MRO) performed by Nelder-Mead Simplex Method displayed sugar yields similar to those obtained by individual PLS optimization. This complete statistical study confirmed that the established models were appropriate to predict the sugar yields achieved after different pretreatment conditions from WB and DWB biomasses. Finally, Scanning Electron microscopy (SEM) studies allowed us to establish clearer link between structural changes induced by pretreatment and the best enzymatic performances obtained.
Databáze: OpenAIRE