THE INFLUENCE OF THE ROUGHNESS PARAMETERS ON THE EHL LINE CONTACT USING THE FREE VOLUME MODEL

Autor: Vincenzo D'Agostino, Adolfo Senatore, Vincenzo Petrone
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Popis: A numerical solution of elastohydrodynamic lubrication (EHL) contact between two rough surface cylinders is presented. In the theoretical approach the free-volume viscosity model is used to describe the piezo-viscous behavior of the lubricant in a Newtonian Elastohydrodynamic line contact [1,2]. Random rough surfaces with Gaussian and exponential statistics have been generated using a method outlined by Garcia and Stoll [3], where an uncorrelated distribution of surface points using a random number generator is convolved with a Gaussian filter to achieve correlation. This convolution is most efficiently performed using the discrete Fast Fourier Transform (FFT) algorithm, which in MATLAB is based on the FFTW library [4]. The maximum pressure and average film thickness are studied at different values of RMS, skewness, kurtosis, autocorrelation function and correlation length. Numerical examples show that skewness and kurtosis have a great effect on the parameters of EHD lubrication. Surface roughness, indeed, tends to reduce the minimum film thickness and it produces pressure fluctuations inside the conjunction which tend to increase the maximum stress. In this way the dynamic stress increases and tends to reduce the fatigue life of the components. It can be seen that the pressures developed in the fluid film in the case of rough surfaces fluctuate with the same frequency of the surface roughness. These pressure ripples correspond to the asperity peaks. This indicates that surface roughness causes very high local contact pressures which may lead to local thinning of the film. A significant reduction has been also observed in the minimum film thickness due to surface roughness.
Databáze: OpenAIRE