Ginkgolic acids inhibit SARS-CoV-2 and its variants by blocking the spike protein/ACE2 interplay

Autor: Yusen Xiang, Guanglei Zhai, Yaozong Li, Mengge Wang, Xixiang Chen, Ruyu Wang, Hang Xie, Weidong Zhang, Guangbo Ge, Qian Zhang, Yechun Xu, Amedeo Caflisch, Jianrong Xu, Hongzhuan Chen, Lili Chen
Přispěvatelé: University of Zurich, Xu, Jianrong
Rok vydání: 2022
Předmět:
Zdroj: International journal of biological macromolecules.
ISSN: 1879-0003
Popis: Targeting the interaction between the spike protein receptor binding domain (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2) is a potential therapeutic strategy for treating coronavirus disease 2019 (COVID-19). However, we still lack small-molecule drug candidates for this target due to the missing knowledge in the hot spots for the protein-protein interaction. Here, we used NanoBiT technology to identify three Ginkgolic acids from an in-house traditional Chinese medicine (TCM) library, and they interfere with the S-RBD/ACE2 interplay. Our pseudovirus assay showed that one of the compounds, Ginkgolic acid C17:1 (GA171), significantly inhibits the entry of original SARS-CoV-2 and its variants into the ACE2-overexpressed HEK293T cells. We investigated and proposed the binding sites of GA171 on S-RBD by combining molecular docking and molecular dynamics simulations. Site-directed mutagenesis and surface plasmon resonance revealed that GA171 specifically binds to the pocket near R403 and Y505, critical residues of S-RBD for S-RBD interacting with ACE2. Thus, we provide structural insights into developing new small-molecule inhibitors and vaccines against the proposed S-RBD binding site.
Databáze: OpenAIRE