Hybrid Evolutionary Algorithm for Residential Demand Side Management with a Photovoltaic Panel and a Battery
Autor: | Zineb Garroussi, Rachid Ellaia, Jean-Yves Lucas, El-Ghazali Talbi |
---|---|
Přispěvatelé: | Ecole Mohammadia d'Ingénieurs (EMI), Parallel Cooperative Multi-criteria Optimization (DOLPHIN), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etudes et Recherche en Mathématiques Appliquées (LERMA), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), EDF R&D (EDF R&D), EDF (EDF) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Battery (electricity)
Mathematical optimization Computer science 020209 energy Photovoltaic system Evolutionary algorithm 02 engineering and technology [INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] Solver 7. Clean energy Standard deviation Power (physics) Smart grid Encoding (memory) 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMS [INFO]Computer Science [cs] |
Zdroj: | Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), 2017 International Conference on ICCAIRO 2017-International Conference on Control, Artificial Intelligence, Robotics & Optimization ICCAIRO 2017-International Conference on Control, Artificial Intelligence, Robotics & Optimization, May 2017, Prague, Czech Republic. pp.4-10, ⟨10.1109/ICCAIRO.2017.10⟩ |
DOI: | 10.1109/ICCAIRO.2017.10⟩ |
Popis: | International audience; Residential demand side management (DSM) is one of the most challenging topics in smart grids. In this paper, a multiobjective model for the residential DSM over a 24-hour horizon is presented. This model consists of appliances, a battery and a photovoltaic panel. The resolution of this model is based on combining a multiobjective evolutionary algorithm (NSGA-II) and an exact solver (CPLEX). Solutions in this hybrid approach are incompletely represented, and optimally the exact solver determines the missing parts of the encoding. In our case, hybridization involves solving a MILP sub-problem by CPLEX to manage the battery and the photovoltaic panel constraints. Through case studies, It is shown that the coordination between the photovoltaic panel and the battery is effective to reduce the total electricity cost, the discomfort and the standard deviation of power consumed especially in summer conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |