Harmonic wavelets based response evolutionary power spectrum determination of linear and nonlinear structural systems with singular matrices

Autor: V. C. Fragkoulis, Michael Beer, G.D. Pasparakis
Rok vydání: 2021
Předmět:
Zdroj: Mechanical Systems and Signal Processing
ISSN: 0888-3270
DOI: 10.1016/j.ymssp.2020.107203
Popis: A new approximate analytical technique is proposed for determining the response evolutionary power spectrum (EPS) of stochastically excited structural multi-degree-of-freedom (MDOF) linear and nonlinear systems with singular matrices. Such systems can appear, indicatively, when a redundant coordinates modeling is adopted for forming the equations of motion of complex multi-body systems. For this case, it can be argued that this modeling approach facilitates the system’s stochastic response analysis, since employment of redundant DOFs is associated with computational cost efficient solution frameworks, and potentially provides with enhanced modeling flexibility. In this context, aiming at the joint time–frequency response analysis of MDOF systems, recently developed wavelet-based solution frameworks, which generalize classic input–output relationships of random vibration, are adopted and further generalized in this paper to account for systems with singular matrices. Specifically, resorting to the theory of generalized inverses of singular matrices, as well as to the theory of harmonic wavelets, a Moore–Penrose generalized matrix inverse excitation-response relationship is derived herein for determining the response EPS of linear MDOF systems. Further, a recently developed harmonic-wavelet-based statistical linearization technique is also generalized to account for the case of nonlinear MDOF systems. The validity of the proposed technique is demonstrated by pertinent numerical examples.
Databáze: OpenAIRE