Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets

Autor: Patrick Pouteau, Raymond Campagnolo, Frederic Ginot, Gilles Marchand, Cyril Delattre
Rok vydání: 2005
Předmět:
Zdroj: Analytical chemistry. 77(16)
ISSN: 0003-2700
Popis: Electrical monitoring of DNA hybridization is one way to reduce the cost and size of the DNA chip reader in comparison with the more classical optical detection. Within electrical methods, electrochemical detection shows very high performances in terms of accuracy and sensitivity, especially when an enzymatic accumulation is used to amplify the signal. However, signal multiplexing for miniaturized systems based on both enzymatic accumulation and electrochemical detection remains challenging due to the Brownian diffusion of the detected product of the enzymatic reaction. We present here a DNA chip with electrical detection based on the following sequence: (i) hybridization of nucleic acids and washing in a liquid layer as usual, (ii) formation of independent nanodroplets on each detection site, (iii) enzymatic accumulation in each droplet avoiding cross-contamination between neighboring sites, and (iv) electrochemical detection of the product accumulated during the enzymatic reaction. The simple and fast transition from the liquid layer (hybridization step) to an array of nanodroplets (enzymatic accumulation and detection steps) was performed through the filling of the hybridization chamber with a solution containing the enzymatic substrates, the drawing of this solution, and the simultaneous creation of droplets thanks to retention areas based on circular rims or hydrophilic rings. Using this approach, hybridization is achieved in a liquid layer as usual, followed by the enzymatic accumulation in nanodroplets to avoid the cross-talk between neighboring sites. Moreover, working in droplets enables a fast increase in the concentration of the product generated by the enzymatic reaction and thus an improvement of the detection limit of the system.
Databáze: OpenAIRE