Thermal and long period stability of series of V(V), V(IV) and V(III) complex with Schiff base ligands in solid state

Autor: Maciej Hodorowicz, Ryszard Gryboś, Janusz Szklarzewicz, Anna Jurowska
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: The synthesis and physicochemical properties of three new complexes of vanadium at +5, +4 and +3 oxidation state are described and discussed. The octahedral surrounding of vanadium for V(III) complexes of [V(L1)(HL1)] general formula is filled with two ONO tridentate ligand L, for V(IV) one ONO ligand L, oxido ligand and 1,10-phenanthroline (phen) as a co-ligand are presented in complexes of [VO(L2)(phen)]. For V(V) the complexes of [VO2(L1)(solv)] type were formed. As ligands, the H2L Schiff bases were formed in reaction between 5-hydroxysalcylaldehyde and phenylacetic hydrazide (H2L1) and 3,5-dichlorosalicyaldehyde and 4-hydroxybenzhydrazide (L2). The magnetic moment measurements, in 8 year period, show, that V(III) complexes slowly oxidise to V(IV) with preservation of the nonoxido character of the complexes, while V(IV) complexes were found to be stable. The TG and SDTA measurements indicate, that thermal stability depends mainly on the oxidation state of vanadium. The less thermally stable are the V(V) complexes, while V(IV) and V(III) are stable up to ca. 200oC. In solution, at pH 2 (similar to that in human digestion system), again the V(IV) are the most stable, only at pH 7.0 V(III) complexes had higher stability. The most stable, thus best for pharmaceutical use, are V(IV) complexes.
Databáze: OpenAIRE