Sequential predictors for delay compensation for discrete time systems with time-varying delays

Autor: Indra Narayana Sandilya Bhogaraju, Michael Malisoff, Frédéric Mazenc
Přispěvatelé: Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Dynamical Interconnected Systems in COmplex Environments (DISCO), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Louisiana State University (LSU)
Rok vydání: 2020
Předmět:
Zdroj: Automatica
Automatica, 2020, 122, ⟨10.1016/j.automatica.2020.109188⟩
Automatica, Elsevier, 2020, 122, ⟨10.1016/j.automatica.2020.109188⟩
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2020.109188
Popis: International audience; We study time-varying linear discrete time systems with uncertainties and time-varying measurement delays, whose outputs are perturbed by uncertainty. We build sequential predictors, which ensure input-to-state stability with respect to the uncertainties and which can be constructed using output values under arbitrarily long delays. The number of required sequential predictors is any upper bound for the delay in our feedback stabilized closed loop systems. We illustrate our work in a digital control problem for a continuous time system that is discretized through sampling.
Databáze: OpenAIRE