Minimax estimation of Functional Principal Components from noisy discretized functional data
Autor: | Ryad Belhakem, Franck Picard, Vincent Rivoirard, Angelina Roche |
---|---|
Přispěvatelé: | CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Belhakem, Ryad |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | HAL |
Popis: | Functional Principal Component Analysis is a reference method for dimension reduction of curve data. Its theoretical properties are now well understood in the simplified case where the sample curves are fully observed without noise. However, functional data are noisy and necessarily observed on a finite discretization grid. Common practice consists in smoothing the data and then to compute the functional estimates, but the impact of this denoising step on the procedure's statistical performance are rarely considered. Here we prove new convergence rates for functional principal component estimators. We introduce a double asymptotic framework: one corresponding to the sampling size and a second to the size of the grid. We prove that estimates based on projection onto histograms show optimal rates in a minimax sense. Theoretical results are illustrated on simulated data and the method is applied to the visualization of genomic data. |
Databáze: | OpenAIRE |
Externí odkaz: |