Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations

Autor: Stefano De Marco, Alexandre Zhou, Emmanuel Gobet, Florian Bourgey
Přispěvatelé: Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC)
Rok vydání: 2020
Předmět:
Zdroj: Monte Carlo Methods and Applications
Monte Carlo Methods and Applications, De Gruyter, 2020, 26 (2), ⟨10.1515/mcma-2020-2062⟩
ISSN: 1569-3961
0929-9629
DOI: 10.1515/mcma-2020-2062
Popis: The multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 2008, 3, 607–617] has a natural application to the evaluation of nested expectations 𝔼 [ g ( 𝔼 [ f ( X , Y ) | X ] ) ] {\mathbb{E}[g(\mathbb{E}[f(X,Y)|X])]} , where f , g {f,g} are functions and ( X , Y ) {(X,Y)} a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal-dual algorithms for stochastic control problems.
Databáze: OpenAIRE