Uncertainty relation for angle from a quantum-hydrodynamical perspective

Autor: Jean-Pierre Gazeau, Tomoi Koide
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
High Energy Physics - Theory
Angular momentum
hydrodynamics: quantum
02.50.Ey
General Physics and Astronomy
FOS: Physical sciences
General Relativity and Quantum Cosmology (gr-qc)
angular momentum
01 natural sciences
General Relativity and Quantum Cosmology
11.10.Ef
Variational principle
0103 physical sciences
stochastic
Statistical physics
stochastic calculus
010306 general physics
uncertainty relations
Quantum
Eigenvalues and eigenvectors
Condensed Matter - Statistical Mechanics
Physics
variational principle
Quantum Physics
Statistical Mechanics (cond-mat.stat-mech)
010308 nuclear & particles physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Operator (physics)
variational
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
Variational method
High Energy Physics - Theory (hep-th)
03.65.Ca
Quantum hydrodynamics
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
uncertainty relation
Polar coordinate system
Quantum Physics (quant-ph)
Zdroj: Annals Phys.
Annals Phys., 2020, 416, pp.168159. ⟨10.1016/j.aop.2020.168159⟩
DOI: 10.1016/j.aop.2020.168159⟩
Popis: We revisit the problem of the uncertainty relation for angle by using quantum hydrodynamics formulated in the stochastic variational method (SVM), where we need not define the angle operator. We derive both the Kennard and Robertson-Schroedinger inequalities for canonical variables in polar coordinates. The inequalities have state-dependent minimum values which can be smaller than \hbar/2 and then permit a finite uncertainty of angle for the eigenstate of the angular momentum. The present approach provides a useful methodology to study quantum behaviors in arbitrary canonical coordinates.
Comment: 7 pages, no figure, discussions and references are added
Databáze: OpenAIRE