Arithmetic properties of Apéry-like numbers

Autor: Eric Delaygue
Přispěvatelé: Combinatoire, théorie des nombres (CTN), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Research supported by the project Holonomix (PEPS CNRS INS2I 2012), Delaygue, Eric
Rok vydání: 2017
Předmět:
Zdroj: Compositio Mathematica
Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (2)
ISSN: 1570-5846
0010-437X
DOI: 10.1112/s0010437x17007552
Popis: We provide lower bounds for p-adic valuations of multisums of factorial ratios which satisfy an Ap\'ery-like recurrence relation: these include Ap\'ery, Domb, Franel numbers, the numbers of abelian squares over a finite alphabet, and constant terms of powers of certain Laurent polynomials. In particular, we prove Beukers' conjectures on the p-adic valuation of Ap\'ery numbers. Furthermore, we give an effective criterion for a sequence of factorial ratios to satisfy the p-Lucas property for almost all primes p.
Comment: 25 pages. Version v2 contains cosmetic changes and a modification of the definition of $r$-admissibility
Databáze: OpenAIRE