Physiological and coordinate downregulation of the NPC1 and NPC2 genes are associated with the sequestration of LDL-derived cholesterol within endocytic compartments

Autor: Sarah Mount Patrick, William S. Garver, Khameeka N. Kitt, Gordon A. Francis, David Jelinek, Teddy Chan
Rok vydání: 2009
Předmět:
Zdroj: Journal of cellular biochemistry. 108(5)
ISSN: 1097-4644
Popis: The Niemann-Pick C1 and C2 (NPC1 and NPC2) proteins have a central role in regulating the transport of lipoprotein-derived cholesterol from endocytic compartments to the endoplasmic reticulum for esterification by acyl-CoA:cholesterol acyltransferase (ACAT) and feedback inhibition of the sterol regulatory element-binding protein (SREBP) pathway. Since the NPC1 gene/protein has recently been shown to be downregulated by feedback inhibition of the SREBP pathway, the present study was performed to determine whether physiological downregulation of the NPC1 gene/protein alters the transport and metabolism of low-density lipoprotein (LDL)-derived cholesterol in human fibroblasts. To perform this study, three different culture conditions were used that included fibroblasts grown in lipoprotein-deficient serum (LPDS), LPDS supplemented with LDL, and LPDS supplemented with LDL, followed by equilibration in the absence of LDL to allow the transport of LDL-derived cholesterol from endocytic compartments and equilibration of cellular sterol pools. The results from this study indicated that in addition to the NPC1 gene/protein, the NPC2 gene/protein was also downregulated by LDL-derived cholesterol-dependent feedback inhibition and that downregulation of both the NPC1 and NPC2 genes/proteins was associated with the sequestration of LDL-derived cholesterol within endocytic compartments, including late endosomes/lysosomes after equilibration. Therefore, it is proposed that physiological and coordinate downregulation of the NPC1 and NPC2 genes/proteins promotes the sequestration of LDL-derived cholesterol within endocytic compartments and serves a role in maintaining intracellular cholesterol homeostasis.
Databáze: OpenAIRE