Deep Learning for In-Vehicle Intrusion Detection System

Autor: Jean-Christophe Janodet, Blaise Hanczar, Elies Gherbi, Witold Klaudel
Přispěvatelé: IRT SystemX (IRT SystemX), Informatique, BioInformatique, Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay, Yang H., Pasupa K., Leung A.CS., Kwok J.T., Chan J.H., King I., IRT SystemX
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Communications in Computer and Information Science
27th International Conference on Neural Information Processing (ICONIP 2020)
27th International Conference on Neural Information Processing (ICONIP 2020), Nov 2020, Bangkok, Thailand. pp.50--58, ⟨10.1007/978-3-030-63820-7_6⟩
Communications in Computer and Information Science ISBN: 9783030638191
ICONIP (4)
DOI: 10.1007/978-3-030-63820-7_6⟩
Popis: International audience; Modern and future vehicles are complex cyber-physical systems. The connection to their outside environment raises many security problems that impact our safety directly. In this work, we propose a Deep CAN intrusion detection system framework. We introduce a multivariate time series representation for asynchronous CAN data which enhances the temporal modelling of deep learning architectures for anomaly detection. We study different deep learning tasks (supervised/unsupervised) and compare several architectures, in order to design an in-vehicle intrusion detection system that fits in-vehicle computational constraints. We conduct experiments with many types of attacks on an in-vehicle CAN using SynCAn Dataset.
Databáze: OpenAIRE