Excretion of the N(2)-glucuronide conjugate of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine in urine and its relationship to CYP1A2 and NAT2 activity levels in humans

Autor: Steven R. Tannenbaum, W. G. Stillwell, Rashmi Sinha
Rok vydání: 2002
Předmět:
Zdroj: Carcinogenesis. 23(5)
ISSN: 0143-3334
Popis: 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mutagenic and carcinogenic heterocyclic aromatic amine formed in meat products during cooking. The genotoxity of PhIP requires an initial cytochrome P450-mediated N-oxidation followed by N-O-esterification catalyzed generally by N-acetyltransferases and sulfotransferases. This study examined the urinary excretion of N(2)-(beta-1-glucos-iduronyl)-2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine-the major human urinary N-oxidation metabolite of PhIP-and determined its relationship to individual activity levels of cytochrome P4501A2 (CYP1A2) and N-acetyltransferase (NAT2). The subjects (33 males and 33 females) in the dietary study were phenotyped for their CYP1A2 and NAT2 activity prior to consumption of meat-based diet, and urine collections were obtained 0-12 and 12-24 h after ingestion of the meal. Acidic hydrolysis of N(2)-(beta-1-glucosiduronyl)-2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine and its d(3)-analog to form their respective deaminated products 2-hydroxy-1-methyl-6-phenylimidazo[4,5-b]pyridine (2-OH-PhIP) was used in the assay. The products after derivatization were analyzed by capillary gas chromatography-negative ion chemical ionization mass spectrometry with selective ion monitoring. The amount of N(2)-(beta-1-glucosiduronyl)-2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine measured as the acid hydrolysis product 2-OH-PhIP in the 0-12 h urine was 20.2 +/- 8.0% (mean +/- SD) of the ingested dose; the median was 18.8% and the range varied from 5.4 to 39.6% within the group. In a subset (n = 18) of samples from individual urine collected from the 12-24 h period, an average value of 4.4 +/- 2.5% (+/- SD) of the dose was recovered. The excretion of N(2)-(beta-1-glucosiduronyl)-2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine in the 0-12 h urine was significantly related to the quantity of PhIP ingested for all subjects (r = 0.52, P0.0001). Linear regression analysis of the relationship between the excretion level of N(2)-(beta-1-glucosiduronyl)-2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine, adjusted for meat intake and CYP1A2 activity in the combined group of males and females showed a low association (r = 0.25, P = 0.05). There was no association between the amount of N(2)-(beta-1-glucosiduronyl)-2-hydroxyamino-1-methyl-6-phenylimid-azo[4,5-b]pyridine in urine and NAT2 activity levels of the subjects nor with the age of the subjects. N(2)-(beta-1-glucosi-duronyl)-2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine comprised a significant proportion of the ingested dose in some individuals; however, considerable variation was found within the group. The results indicate that interindividual differences in the rates of N-oxidation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, as well as phase II glucuronidation reactions regulate the formation of this metabolite in humans.
Databáze: OpenAIRE