Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip

Autor: Shane M. Eaton, Giulio Cerullo, Lorenzo Amato, Yu Gu, Roberto Osellame, Nicola Bellini
Rok vydání: 2012
Předmět:
Zdroj: Lab on a Chip
Lab on a chip
12 (2012): 1135–1142.
info:cnr-pdr/source/autori:L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, R. Osellame/titolo:Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip/doi:/rivista:Lab on a chip (Print)/anno:2012/pagina_da:1135/pagina_a:1142/intervallo_pagine:1135–1142/volume:12
ISSN: 1473-0189
1473-0197
DOI: 10.1039/c2lc21116e
Popis: We report on the integration of a size-based three-dimensional filter, with micrometre-sized pores, in a commercial microfluidic chip. The filter is fabricated inside an already sealed microfluidic channel using the unique capabilities of two-photon polymerization. This direct-write technique enables integration of the filter by post-processing in a chip that has been fabricated by standard technologies. The filter is located at the intersection of two channels in order to control the amount of flow passing through the filter. Tests with a suspension of 3 μm polystyrene spheres in a Rhodamine 6G solution show that 100% of the spheres are stopped, while the fluorescent molecules are transmitted through the filter. We demonstrate operation up to a period of 25 minutes without any evidence of clogging. Preliminary validation of the device for plasma separation from whole blood is shown. Moreover, the filter can be cleaned and reused by reversing the flow.
Databáze: OpenAIRE