Reverberant speech recognition exploiting clarity index estimation

Autor: Patrick A. Naylor, Dushyant Sharma, Toon van Waterschoot, Pablo Peso Parada
Přispěvatelé: Commission of the European Communities
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Popis: We present single-channel approaches to robust automatic speech recognition (ASR) in reverberant environments based on non-intrusive estimation of the clarity index (C 50). Our best performing method includes the estimated value of C 50 in the ASR feature vector and also uses C 50 to select the most suitable ASR acoustic model according to the reverberation level. We evaluate our method on the REVERB Challenge database employing two different C 50 estimators and show that our method outperforms the best baseline of the challenge achieved without unsupervised acoustic model adaptation, i.e. using multi-condition hidden Markov models (HMMs). Our approach achieves a 22.4 % relative word error rate reduction in comparison to the best baseline of the challenge. ispartof: EURASIP Journal on Advances in Signal Processing vol:2015 issue:1 pages:1-12 status: published
Databáze: OpenAIRE