Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass (SPG) membranes

Autor: Catherine Charcosset, Romain Melich, Sébastien Urbaniak, Jean-Pierre Valour, Frédéric Padilla
Přispěvatelé: Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS), Application des ultrasons à la thérapie (LabTAU), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lyon, Laboratoire d'automatique et de génie des procédés (LAGEP), Laboratoire d'Imagerie Paramétrique (LIP), Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR58-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Colloids and Surfaces A: Physicochemical and Engineering Aspects, Elsevier, 2019, 560, pp.233-243. ⟨10.1016/j.colsurfa.2018.09.058⟩
ISSN: 0927-7757
Popis: International audience; Microbubbles are increasingly used in several fields, such as medical imaging for enhanced contrast ultrasound imaging. Theses microbubbles usually consist of a gas core stabilized by surfactant molecules. In this study, a technique using Shirasu Porous Glass (SPG) membranes was used to produce perfluorocarbon microbubbles. The microbubbles obtained were characterized by their size, size distribution, and stability. The effect of several parameters on the microbubble's size was investigated related to the process (transmembrane pressure, ΔP, bubble point pressure, P BP , shear stress, w), membrane pore size, D p , and formulation (gas, surfactants in the aqueous phase). The transmembrane pressure nor the shear stress (w) had influence on the microbubble's size or size distribution for ΔP/P BP < 1.5. The decrease of the membrane pore size from 1.1, 0.5, to 0.2 μm led to lower microbubble size 13.3, 6.36, and 4.42 μm, respectively, which was associated with higher size distribution 16%, 24% and 31%, respectively due to the higher Laplace pressure exerted on smaller microbubbles leading to their destabilization. With the 1.1 μm pore size membrane, perfluorocarbon microbubbles were obtained with a diameter of 13.3 μm and coefficient of variation (CV) of 16% when stabilized by sodium dodecyl sulfate (SDS), 15.6 μm with CV% of 23% when stabilized by Tween20, and 16.5 μm with CV% of 26% when stabilized by Polyoxyethylene (40) stearate (PEG40S). These low CV were indication of monodispersity. Perfluorocarbon microbubbles had a smaller size than air microbubbles due to the lower surface tension that decreased the retention force, keeping the microbubbles at the pore opening. The stability study showed that the perfluorocarbon gas greatly increased the lifetime of the microbubbles with a slight increase in size of 1.3
Databáze: OpenAIRE