Idempotent, model, and Toeplitz operators attaining their norms

Autor: Jaydeb Sarkar, Kousik Dhara, Neeru Bala, Aryaman Sensarma
Rok vydání: 2021
Předmět:
Zdroj: Linear Algebra and its Applications. 622:150-165
ISSN: 0024-3795
DOI: 10.1016/j.laa.2021.03.032
Popis: We study idempotent, model, and Toeplitz operators that attain the norm. Notably, we prove that if $\mathcal{Q}$ is a backward shift invariant subspace of the Hardy space $H^2(\mathbb{D})$, then the model operator $S_{\mathcal{Q}}$ attains its norm. Here $S_{\mathcal{Q}} = P_{\mathcal{Q}}M_z|_{\mathcal{Q}}$, the compression of the shift $M_z$ on the Hardy space $H^2(\mathbb{D})$ to $\mathcal{Q}$.
15 pages.To appear in Linear Algebra and Its Applications
Databáze: OpenAIRE