Tidal Flow Perfusion for the Artificial Placenta: A Paradigm Shift
Autor: | Marie S. Cornell, Mark M.P. Jeakle, Alvaro Rojas-Pena, Taylor L. Fegan, Samantha C. Toor, Peter R. Kordell, Jacqueline C. Kading, Rachel A. Pfannes, Mark W. Langley, Mary Reiber, George B. Mychaliska, John M. Toomasian, Robert H. Bartlett, Gergely Lautner |
---|---|
Rok vydání: | 2019 |
Předmět: |
Extracorporeal Circulation
medicine.medical_specialty Mean arterial pressure Placenta Biomedical Engineering Biophysics Hemodynamics Lumen (anatomy) Bioengineering 030204 cardiovascular system & hematology Article Extracorporeal Biomaterials 03 medical and health sciences Fetus 0302 clinical medicine Pregnancy Internal medicine Jugular vein Heart rate Animals Medicine Sheep Domestic Sheep business.industry General Medicine Perfusion Fetal circulation Animals Newborn 030228 respiratory system Cardiology Female Artificial Organs business circulatory and respiratory physiology |
Zdroj: | ASAIO J |
ISSN: | 1058-2916 |
Popis: | The modalities of vascular access for the extracorporeal artificial placenta (AP) have undergone many iterations over the past decade. We hypothesized that single lumen cannulation (SLC) of the jugular vein using tidal flow extracorporeal life (ECLS) support is a feasible alternative to venovenous (VV) umbilical-jugular cannulation and double lumen cannulation (DLC) and can maintain fetal circulation, stable hemodynamics, and adequate gas exchange for 24 hours. After in vitro evaluation of the tidal flow system, six preterm lambs at estimated gestational age 118-124 days (term 145 days) were delivered and underwent VV-ECLS. Three were supported using DLC and three with SLC utilizing tidal flow AP support. Hemodynamics, circuit flow, and gas exchange were monitored. Target fetal parameters were as follows: mean arterial pressure 40-60 mmHg, heart rate 140-240 beats per minute (bpm), SatO2% 60-80%, PaO2 25-50 mmHg, PaCO2 30-55 mmHg, oxygen delivery >5 ml O2/dl/kg/min, and circuit flow 100 ± 25 ml/kg/min. All animals survived 24 hours and maintained fetal circulation with stable hemodynamics and adequate gas exchange. Parameters of the tidal flow group were comparable with those of DLC. Single lumen jugular cannulation using tidal flow is a promising vascular access strategy for AP support. Successful miniaturization holds great potential for clinical translation to support extremely premature infants. |
Databáze: | OpenAIRE |
Externí odkaz: |